От чего зависит сопротивление проводника

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Определение резистивной составляющей

Электросопротивление материала – это соотношение величины протекающего тока и приложенного к нему напряжения. Для каждого конкретного элемента это соотношение своё. Для обозначения данной физической величины используют букву R. При определении её используют формулу закона Ома для участка цепи:

R=U/I.

Из представленного выражения видно, что резистивная составляющая – это отношение потенциала на проводнике к силе тока на нём же. Таким образом, чем выше величина тока, тем слабее резистивная составляющая у проводника, при большем напряжении – большая.

У любого резистора, выпускаемого в промышленных условиях, существует порядка десяти параметров, на которые необходимо обращать внимание при его выборе. Главный его параметр – сопротивление

Это статическая характеристика для любого проводника, заданная при его производстве. Т.е. при подаче большего потенциала на проводящий элемент изменится только ток, проходящий сквозь него, но не его резистивная составляющая. Т.е. соотношение U/I остаётся неизменным.

Зависимость от свойств напряжения

Удельное сопротивление

После простого преобразования основной формулы можно составить корректное выражения для напряжения:

U = I * R.

Источник тока генерирует электричество. Подключенный резистор потребляет энергию с трансформацией в тепло. Для подержания определенной силы тока необходимо установить соответствующее напряжение.

От чего зависит сопротивление проводника
Измерительная схема, графики

На графиках показаны вольтамперные характеристики разных приборов. Первые два демонстрируют линейные зависимости, в которых изменяется только угол наклона прямой линии (зависимость от электрического сопротивления резистора).

Если подключить полупроводниковый диод, график существенно изменится. По рисунку можно определить малое сопротивление в области положительных значений U. Однако после изменения полярности увеличение отрицательного напряжения не сопровождается аналогичным изменением силы тока. Одностороннюю проводимость, в частности, используют для выпрямления сигналов.

На последнем графике сдвинутая точка перехода нулевого значения силы тока обозначает ЭДС источника питания. Как и в предыдущем примере, небольшой угол по отношению к вертикали показывает малое внутреннее сопротивление АКБ.

Электрическое сопротивление и проводимость. Единицы измерений

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать «Сопротивление проводника равно 15 Ом», можно написать просто: r = 15 Ω. 1 000 Ом называется 1 килоом (1кОм, или 1кΩ), 1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Популярные статьи  Выбор электрооборудования по техническим характеристикам

Электрической проводимостью называется способность материала пропускать через себя электрический ток. Электрическая проводимость или, иначе, электропроводность является обратной величиной по отношению к сопротивлению. Обозначается проводимость буквой G.

G = 1/R

В системе СИ электропроводность измеряется в сименсах (1 См = 1 Ом⁻¹). В гауссовой системе и в СГСЭ используют статсименс, а СГСМ — абсименс.

Проводимость, наравне с сопротивлением, играет большую роль в электротехнике и других технических науках. Её физический смысл интуитивно понятен из ее гидравлического аналога — все понимают, что у широкого шланга сопротивление потоку воды ниже, и, соответственно, он лучше пропускает воду, чем тонкий. Также и с электропроводимостью — материя с более низким сопротивлением лучше проводит электричество.

Единица электропроводности названа в честь известного немецкого инженера, изобретателя, учёного и промышленника — основателя фирмы Siemens — Эрнста Вернера фон Сименса (Werner Ernst von Siemens). Между прочим, именно он предложил ртутную единицу сопротивления, которая несколько отличается от современного ома. Сименс определил единицу сопротивления как сопротивление столба ртути высотой 100 см с поперечным сечением 1 мм² при температуре 0° С.

Диэлектрики

Если среда содержит очень мало свободных зарядов (или не содержит их вообще), такая среда не может проводить электрический ток и является непроводником (диэлектриком, изолятором).

В отличие от кристаллов проводников, кристаллы диэлектрика имеют такую пространственную структуру, что внешние электроны не могут далеко удалиться от ионов. В результате даже при приложении достаточно большого внешнего электрического поля ток в диэлектрике не возникает. Типичными примерами непроводников является стекло или пластмассы.

Жидкости-диэлектрики – это жидкости, в которых нет растворенных примесей, а молекулы этих жидкостей сами по себе ионами не являются, например, дистиллированная вода.

Газы в нормальных условиях, как уже было сказано выше, содержат очень мало заряженных частиц, и являются хорошими изоляторами. Примером может являться обычный воздух.

Граница между проводниками и непроводниками достаточно условна. Кроме того, существуют вещества, занимающие промежуточное положение, они называются полупроводниками. В таких веществах количество свободных зарядов не так велико, как в металлах, однако, значительно больше, чем в диэлектриках. К типичным полупроводникам относится кремний.

Зависимость от геометрии

Индуктивность проводника

Из раздела с описанием удельных параметров понятно, что электрическое сопротивление проводника зависит от длины. Если взять образец из серебра (площадь нормированного сечения 1 кв. мм) при длине 6,8 м, несложно вычислить значение R = 6,8 * 0,016 = 0,1088 Ом.

Аналогичным образом решают иные практические задачи. Чтобы создать провод с электросопротивлением 100 Ом понадобится серебряная жила длиной 6 250 м = 100/ 0,016. Если применить металлический проводник из железа, длина составит 833 м = 100/0,12.

Следующий решающий фактор – площадь поперечного сечения. Для наглядности можно использовать пример с перекачиванием жидкости из основного бака в две разные емкости. Создать необходимый напор несложно поднятием главного резервуара на небольшую высоту. Применив трубки с разным диаметром протоков, можно увидеть разницу в скорости заполнения контрольных объемов. Если показания будут измеряться при желании несложно составить пропорциональные зависимости с учетом исходных геометрических параметров транспортных каналов.

Размерность проводников также имеет значение. Электрическое сопротивление (R) равно удельному значению для определенного материала (Rуд), умноженному на длину (L) и деленому на соответствующее поперечное сечение (S). Если известен только диаметр, то для круглой жилы можно применить классическую формулу из школьного курса геометрии:

S = (π * d2)/4 = (3,14 * d2)/4.

Длину вычисляют по преобразованному выражению:

L = S * (R/ Rуд).

Эти пропорции демонстрируют, от чего зависит сопротивление.

Зависимость от свойств напряжения

Удельное сопротивление

После простого преобразования основной формулы можно составить корректное выражения для напряжения:

U = I * R.

Источник тока генерирует электричество. Подключенный резистор потребляет энергию с трансформацией в тепло. Для подержания определенной силы тока необходимо установить соответствующее напряжение.

От чего зависит сопротивление проводника
Измерительная схема, графики

На графиках показаны вольтамперные характеристики разных приборов. Первые два демонстрируют линейные зависимости, в которых изменяется только угол наклона прямой линии (зависимость от электрического сопротивления резистора).

Если подключить полупроводниковый диод, график существенно изменится. По рисунку можно определить малое сопротивление в области положительных значений U. Однако после изменения полярности увеличение отрицательного напряжения не сопровождается аналогичным изменением силы тока. Одностороннюю проводимость, в частности, используют для выпрямления сигналов.

На последнем графике сдвинутая точка перехода нулевого значения силы тока обозначает ЭДС источника питания. Как и в предыдущем примере, небольшой угол по отношению к вертикали показывает малое внутреннее сопротивление АКБ.

Виды

По типу генерации и характеристикам электроток бывает постоянным и переменным. Постоянный является таковым, который не обладает своим направлением. Он будет течь в любом случае в одну сторону. Переменный время от времени изменяет направленность. Таковым считается любой ток, помимо постоянного. Когда мгновенные показатели повторятся в той же последовательности спустя одинаковые временные интервалы, то подобный электрический ток называется периодическим.

Постоянный

Рассматриваемый ток тот, который на протяжении определенного временного промежутка не изменит собственной величине и направлению. Довольно часто постоянным считают пульсирующий электроток. Он отливается тем, что одинаковое число зарядов регулярно сменяются между собой в одну сторону.

Важно! В процессе определения направления бывают разбежности. Когда электроток формируется передвижением положительных частиц, то направление будет соответствовать перемещению частиц. Когда он сформирован передвижением отрицательных частиц, то направление считается противоположным движению частиц

Когда он сформирован передвижением отрицательных частиц, то направление считается противоположным движению частиц.

Основным достоинством станет то, что его возможно накопить. Делается это собственноручно, с помощью аккумуляторов либо конденсаторов.

От чего зависит сопротивление проводника
Постоянный ток

Переменный

Для понимания сущности переменного электротока требуется представить синусоиду. Непосредственно она наилучшим образом сможет охарактеризовать изменения в постоянном токе. Переменный электроток постоянно изменяет собственную полярность. Во время одного интервала он положительный, других отрицательный. Для него немаловажным фактором станет скорость смены полярности (частота).

Большинство техники функционирует на переменном токе отличных частот. Благодаря изменениям в частоте возможно менять скорость вращения мотора.

Важно! Увидеть наглядный пример возможно, осмотрев обыкновенную лампу. В частности это заметно на некачественной диодной лампочке. В процессе функционирования на постоянном электротоке они будут гореть равномерным светом, а на переменном еле уловимо мерцать

В процессе функционирования на постоянном электротоке они будут гореть равномерным светом, а на переменном еле уловимо мерцать.

От чего зависит сопротивление проводника
Переменный ток

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

От чего зависит сопротивление проводника
Зонная классификация

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Советуем изучить — Примеры выбора плавких предохранителей и автоматических выключателей

Удельное сопротивление меди

В международной системе СИ удельное сопротивление проводников измеряется в Ом∙м. В сфере ИТ чаще используется внесистемная размерность Ом∙мм2/м, более удобная для расчетов, поскольку сечения проводников обычно указаны в мм2. Величина 1 Ом∙мм2/м в миллион раз меньше 1 Ом∙м и характеризует удельное сопротивление вещества, однородный проводник из которого длиной 1 м и с площадью поперечного сечения 1 мм2 дает сопротивление в 1 Ом.

Удельное сопротивление чистой электротехнической меди при 20°С составляет 0,0172 Ом∙мм2/м. В различных источниках можно встретить значения до 0,018 Ом∙мм2/м, что тоже может относиться к электротехнической меди. Значения варьируются в зависимости от обработки, которой подвергнут материал. Например, отжиг после вытягивания («волочения») проволоки уменьшает удельное сопротивление меди на несколько процентов, хотя проводится он в первую очередь ради изменения механических, а не электрических свойств.

Удельное сопротивление меди имеет непосредственное значение для реализации приложений питания по Ethernet. Лишь часть исходного постоянного тока, поданного в проводник, достигнет дальнего конца проводника – определенные потери по пути неизбежны. Так, например, PoE Type 1 требует, чтобы из 15,4 Вт, поданных источником, до запитываемого устройства на дальнем конце дошло не менее 12,95 Вт.

Удельное сопротивление меди изменяется с температурой, но для температур, характерных для сферы ИТ, эти изменения невелики. Изменение удельного сопротивления рассчитывается по формулам:

ΔR = α · R · ΔT

R2 = R1 · (1 + α · (T2 — T1))

где ΔR – изменение удельного сопротивления, R – удельное сопротивление при температуре, принятой в качестве базового уровня (обычно 20°С), ΔT – градиент температур, α – температурный коэффициент удельного сопротивления для данного материала (размерность °С-1). В диапазоне от 0°С до 100°С для меди принят температурный коэффициент 0,004 °С-1. Рассчитаем удельное сопротивление меди при 60°С.

R60°С = R20°С · (1 + α · (60°С — 20°С)) = 0,0172 · (1 + 0,004 · 40) ≈ 0,02 Ом∙мм2/м

Удельное сопротивление при увеличении температуры на 40°С возросло на 16%. При эксплуатации кабельных систем, разумеется, витая пара не должна находиться при высоких температурах, этого не следует допускать. При правильно спроектированной и установленной системе температура кабелей мало отличается от обычных 20°С, и тогда изменение удельного сопротивления будет невелико. По требованиям телекоммуникационных стандартов сопротивление медного проводника длиной 100 м в витой паре категорий 5e или 6 не должно превышать 9,38 Ом при 20°С. На практике производители с запасом вписываются в это значение, поэтому даже при температурах 25°С ÷ 30°С сопротивление медного проводника не превышает этого значения.

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

где:

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление

График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Зависимость от свойств материала

От чего зависит индуктивность

Для стандартизации приняли единицу измерения 1 Ом. Это сопротивление создает столбик из ртути толщиной 1 кв. мм, высотой – 1063 мм. Измерения выполняются при поддержании нулевой температуры.

Чтобы упростить расчеты, применяют удельное значение сопротивления Rуд, которое создают проводники из других материалов (Длина Х Площадь сечения = 1 000 мм х 1 кв. мм).

Популярные статьи  Позиционные регуляторы и двухпозицонное регулирование

От чего зависит сопротивление проводника
Удельное сопротивление (проводимость)

На рисунке обозначено Rуд (серебра) = 0,016. Это значит, что метровый проводник с нормированной площадью сечения 1 мм кв. создает электрическое сопротивление 0,016 Ом. Сведения о других материалах можно взять из справочника.

Сопротивление, проводимость и закон Ома

Электрическое сопротивление – физическая величина, характеризующая способность проводника препятствовать прохождению по нему электрического тока.

Сопротивление часто обозначается через R или r и в Международной системе единиц (СИ) измеряется в Омах.

В зависимости от среды проводника и носителей зарядов, физическая природа сопротивления может отличаться. Так, например, в металле движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решетки, теряют свой импульс, и энергия их движения преобразуется во внутреннюю энергию кристаллической решетки (то есть становится меньше).

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он выполнен.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и определяется согласно зависимости

где ρ – удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, мм².

Удельное сопротивление ρ – скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения (рисунок 1). При расчетах это значение выбирается из таблицы.

Рис. 1. Удельное сопротивление проводника, ρ

Сопротивление проводника R зависит от внешнего фактора – температуры T, но для разных групп веществ эта зависимость имеет различные зависимости. Так, при снижении температуры металлов их сопротивление снижается (то есть способность проводить ток увеличивается). Если температура металла достигает низких значений, он переходит в состояние так называемой свехрпроводимости и его сопротивление R стремится к 0. Поведение полупроводников под воздействием температур обратное – при снижении температуры T сопротивление R растет, а при его росте наоборот падает (рисунок 2).

Рис. 2. Зависимость сопротивления R от температуры T для металлов и полупроводников

Закон Ома

В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.

Существует несколько интерпретаций закона Ома.

Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R

Рис. 3. Закон Ома для участка цепи

Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А

На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).

Рис. 4. Интерпретация закона Ома для участка цепи с использованием водной аналогии

Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.

Электрическая цепь и ее составные части

Источником электрического тока может служить батарея (гальванический элемент).

На электростанции электрический ток вырабатывают генераторы, приводимые в действие от паровых и гидравлических турбин.

Электродвигатели, лампы, плитки, работающие от электрического тока, называют приемниками или потребителями. Электрическую энергию доставляют к приемнику по проводам.

Чтобы включать и выключать в нужное время приемники электричества, применяют выключатели. Источник тока, приемники и выключатели, соединенные между собой проводами, составляют электрическую цепь.

Чтобы в цепи был ток, она должна быть замкнутой, т. е. состоять только из проводников электричества. Если в каком-нибудь месте провод оборвется или вместо него будет поставлен изолятор, ток в цели прекратится. Такую цепь называют разомкнутой.

Вопросы

  1. Какова роль источника тока в цепи?
  2. Из каких частей состоит электрическая цепь?
  3. Что такое замкнутая цепь? разомкнутая?
  4. Какие приемники или потребители вы знаете?

Как правильно применяются

Вне зависимости от принципа функционирования какого-либо источника электротока, в каждом из разделяются электрозаряды физ.тел. Происходит преобразование какой-либо разновидности энергии в электричество.

Такая энергия в технике применяется повсюду. В любом жилище возможно отыскать быттехнику, существенно облегчающую ведение хозяйства. Помимо этого, предотвращается появление пыли, копоти и других неприятных эффектов использования плит и прочих приборов, актуальных до возникновения электричества.

В промышленной сфере электрическая энергия имеет важную роль. Использование тока дает возможность существенно уменьшить траты, так как такой тип энергии дешевле горючего.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: