Советы по работе с мегаомметром:
- некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
- перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
- измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
- когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
- если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
- если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
- при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.
Способы устранения обнаруженной неисправности
С целью исследования было опробовано два приема восстановления работоспособности розетки:
- переключение проводов кабеля;
- замена корпуса.
Экспериментальный метод
С контактных зажимов розетки отключили жилы подходящего кабеля и подсоединили их в обратной последовательности. За счет этого простого действия потенциал фазы перестал стекать на защитный контакт розетки, а его электрическая связь образовалась с рабочим нулем.
Вольтметр при измерении показал отсутствие опасного потенциала, а одновременное прикосновение руками к корпусу включенной кофемашины и смесителю не вызвало неприятных ощущений.
Замена корпуса
Указанный выше вариант ремонта не может считаться надежным потому, что поврежденный диэлектрический материал розетки Lezard остался под напряжением в электрической схемы. Он не отвечает требованиям надежности, безопасности, может в любой момент создать аварийную ситуацию. Поэтому подлежит полной замене.
Напрашивается вывод:
если в приобретенной партии встретилась одна бракованная розетка, пусть даже от известного производителя, то необходимо абсолютно все изделия подвергать испытаниям, а не выдержавшие проверку экземпляры браковать, не допускать к работе.
Эксперимент с заменой проводов местами явно показал, что неисправная розетка может какое-то время нормально работать и не создавать опасности. Но ее диэлектрический слой в аварийной ситуации при протекании сверхтоков или перегрузок вызовет объединение РЕ-проводника с рабочим нулем до главной защитной шины заземления. А это прямая предпосылка к неправильной работе всех устройств защит с повреждениями электроустановки и оборудования.
Вот на этом вопросе и хочется заострить ваше внимание. Чтобы подобные неисправности не возникали в вашей электропроводке необходимо своевременно измерять и оценивать сопротивление изоляции проводов и оборудования с помощью мегаомметра
Чтобы подобные неисправности не возникали в вашей электропроводке необходимо своевременно измерять и оценивать сопротивление изоляции проводов и оборудования с помощью мегаомметра.
Если нет соответствующих навыков (а это опасная работа с повышенным напряжением), то привлекайте для нее обученный персонал электролабораторий.
О том, как надо работать с мегаомметром при измерениях изоляции в своем видеоролике рассказывает Иван Ко. Рекомендую посмотреть.
Полезные товары
- Лезвия для резьбы по дереву
- Стержень-губка для чистки от ржавчины
- Универсальный ТВ пульт в виде брелка
Полезные сервисы и программы
- Курсы по дизайну
- Онлайн изучение английского языка с репетитором или самостоятельно
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Испытание повышенным напряжением выпрямленного тока.
Силовые кабели напряжением выше 1 кВ испытываются повышенным напряжением выпрямленного тока.
Величины испытательных напряжений и длительность приложения нормированного испытательного напряжения приведены в таблице 5.
Таблица 5. Испытательные напряжения выпрямленного тока для силовых кабелей
Тип кабеля | Испытательные напряжения, кВ; для кабелей на рабочее напряжение, кВ | Продолжительность испытания, мин | |||||||
2 | 3 | 6 | 10 | 10 | 35 | 110 | 220 | ||
Бумажная | 12 | 18 | 36 | 60 | 100 | 175 | 300 | 450 | 10 |
Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД | — | 6 | 12 | — | — | — | — | — | 5 |
Пластмассовая | — | 15 | — | — | — | — | — | — | 10 |
Методика проведения испытания повышенным напряжением выпрямленного тока, а также установки и оборудование для испытания представлены испытаниях изоляции электрооборудования повышенным напряжением.
При испытании напряжение должно плавно подниматься до испытательной величины и поддерживаться неизменным в течение всего периода испытания. Подъем испытательного напряжения для кабельных линий напряжением до 10 кВ осуществляется в течение 1 мин, а для кабельных линий 20-35 кВ — со скоростью не более 0,5 кВ/с.
В случае, если контроль над испытательным напряжением осуществляется по вольтметру, включенному на первичной стороне повышающего трансформатора, то в результаты измерения может вноситься некоторая погрешность за счет падения напря жения в элементах испытательной схемы, в частности, в кенотронах.
Измерение токов утечки кабеля 3-10 кВ при испытаниях повешенным выпрямленным напряжением производиться с помощью микроамперметров, включенных или на стороне высокого напряжения испытательной установки, или в нуль испытательного трансформатора. При применении последней схемы измерения токов утечки возможно искажение отсчета за счет паразитных токов утечки.
При испытаниях силовых кабельных линий повышенным выпрямленным напряжением оценка их состояния производится не только по абсолютному значению тока утечки, но и путем учета характера изменения тока утечки по времени, асимметрии токов утечки по фазам, характера сохранения и спада заряда и т.п. В эксплуатации принято, что кабельная линия может быть введена в работу, если токи утечки имеют стабильное значение, но не превосходят 300 мкА для линий с номинальным напряжением до 10 кВ. Для коротких кабельных линий (длиною до 100 м) без соединительных муфт допустимые токи утечки не должны превышать 2-3 мкА на 1кВ испытательного напряжения. Асимметрия токов утечки по фазам не должны превышать 8-10 при условии, что абсолютные значения токов не превышают допустимые.
Для исправной изоляции силового кабеля ток утечки спадает в зависимости от длительности приложения испытательного напряжения, и тем больше, чем лучше каче ство изоляции. У силового кабеля с дефектной изоляцией ток утечки увеличивается во времени. При заметном нарастании тока утечки при испытании силового кабеля про должительность испытания увеличивается до 10-20 мин. При дальнейшем нарастании утечки, если оно не вызвано дефектами концевых разделок, испытание должно вестись до пробоя изоляции кабеля.
При испытаниях напряжение от выпрямленной установки подводится к одной из жил испытуемого кабеля. Остальные жилы испытуемого кабеля, а также все жилы других параллельных кабелей данного присоединения должны быть надежно соединены между собой и заземлены. У трехжильных кабелей испытанию подвергается изоляция каждой жилы относительно оболочки и других заземленных жил. У однофазных кабелей и кабелей с отдельно освинцованными жилами испытывается изоляция жилы относительно металлической оболочки.
Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания, после того как он дос тиг установившейся величины.
После каждого испытания цепи кабельной линии ее необходимо разрядить по приведенной методике.
Условия эксплуатации электрических сетей
В процессе эксплуатации электрических сетей происходит воздействие множества различных факторов:
Возможны повреждения, допущенные в ходе проведения ремонтных работ.
Внешнее воздействие погодных условий (повышенной и отрицательной температуры, воздействия солнечных лучей, осадков).
Повышенной нагрузки по причине подключения приборов большой мощности.
Разрушается изоляции электропроводки в результате длительной эксплуатации.
Выявления скрытых дефектов изоляции.
Для выявления повреждений изоляции необходима регламентная ревизия, проводимая строго по графику с осуществлением диагностики состояния электропроводки на объекте.
Виды мегаомметров
Сегодня на рынке существует два вида мегаомметров: аналоговый и цифровой:
- Аналоговый (стрелочный мегаомметр). Главной особенностью прибора является встроенный генератор (динамомашина), запускаемый путем вращений рукоятки. Аналоговые приборы снабжены шкалой со стрелкой. Сопротивление изоляции измеряется за счет магнитоэлектрического действия. Стрелка закреплена на ось с рамочной катушкой, на которую воздействует поле постоянного магнита. При движении тока по рамочной катушке стрелка отклоняется на угол, величина которого зависит от силы и напряжения. Указанный тип измерения возможен благодаря законам электромагнитной индукции. К достоинствам аналоговых приборов можно отнести их простоту и надежность, к недостаткам – большой вес и значительные размеры.
- Цифровой (электронный мегаомметр). Наиболее распространенный вид измерителей. Оснащен мощным генератором импульсов, работающим с помощью полевых транзисторов. Такие приборы преобразуют переменный ток в постоянный, источником тока может служить аккумулятор или сеть. Сами замеры осуществляются за счет сравнения падения напряжения в цепи с сопротивлением эталона при помощи усилителя. Результаты замеров отображаются на экране прибора. В современных моделях предусмотрена функция сохранения результатов в памяти для дальнейшего сравнения данных. В отличие от аналогового мегаомметра электронный имеет компактные размеры и малый вес.
Измерения мегаомметром
Приступая к проверке изоляции кабеля мегаомметром, нужно определить, к какому типу относится обследуемый провод. Описание последовательности работ для разных типов кабелей имеет схожий вид, но для каждой группы существуют определенные нюансы.
Измерение высоковольтных линий
Сюда относятся провода с напряжением более тысячи вольт. Согласно нормам, изоляция таких изделий должна иметь сопротивление, превышающее 1000 МОм. Прибор, которым производят замеры, должен быть рассчитанным на 2500 В (аналогично и для низковольтных кабелей).
Испытание низковольтных кабелей
Для таких кабелей показатель должен быть не ниже 0,5 МОм. Сначала прибор ставят между жилами фаз, затем – между фазами и нулем, после этого (если у провода пять жил) – между фазами и заземлением, в самом конце – между заземлительной и нулевой жилами (последнюю перед этим надо отсоединить от шины).
Испытание контрольных кабельных систем
Здесь используются приборы на 500-2500 В. Итоговый результат должен быть больше 1 МОм. Вывод прибора ставят на одну жилу, оставшиеся соединяются и помещаются на землю. Второй вывод кладется на какую-либо жилу, не подлежащую измерению в данный момент. Произведя измерения, жилку кладут к другим и начинают тестировать следующую.
Подготовка к работе
Перед тем, как проверить сопротивление любого кабеля, необходимо обязательно убедиться в том, что на нем нет напряжения. Для высоковольтных линий применяется индикатор высокого напряжения, для низковольтных – защитные средства для манипуляций в электрических установках. Также необходимо вывесить предупреждающие плакаты.
Другие позиции
Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:
- Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
- Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
- Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.
Напоследок
Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.
Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки
Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.
Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:
Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
- Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.
Какие приборы используют?
Прежде чем приступать к работе, нужно замерить температуру воздуха окружающей среды. Для чего это необходимо? Если кабельная линия во время отрицательной температуры будет иметь частицы воды, то они превращаются под действием мороза во льдинки, а лед – это диэлектрик, который не имеет проводимости. Поэтому когда сопротивление будет измеряться при отрицательной температуре, то эти льдинки обнаружены не будут.
Затем для того чтобы осуществит замер изолирующего слоя проводки (ее сопротивление), необходимо обладать специальными приборами и средствами для диагностики. Измерить сопротивление можно специальным прибором, который называется мегаомметром (на фото ниже).
Мегаомметром можно замерить сопротивление на напряжение 2500 В (изоляция низковольтных и высоковольтных линий). Измерение происходит на напряжение 500–2500 В контрольных силовых линий (цепи управления, цепи питания, короткозамыкатели и т. д.).
Такие приборы должны каждый год проходить государственную поверку, в результате которой ставится штамп, где указывается серийный номер и дата, когда необходимо пройти следующую поверку. Каждый кабель имеет свои нормы, ГОСТ и ПУЭ, согласно которым проводятся проверки и испытания проводов.
Нормы сопротивления изоляции для различных кабелей
Встречаются следующие виды электрических проводников:
- Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
- Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
- Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.
Нормы сопротивления изоляции для различных видов электрооборудования
Конкретные показатели сопротивлений для определенных марок кабеля можно узнать в следующей технической литературе:
- ПУЭ — таблица 1.8.34;
- ПТЭ — таблица 37.
Как производится измерение
Замеры производятся мегаомметром для измерения сопротивления изоляции кабелей
При измерениях сопротивления силовых кабелей всегда нужно учитывать температуру окружающей среды и производить их при температуре не ниже +5.
Такие ограничения введены по той причине, что в кабеле может присутствовать влага, которая при отрицательных температурах превратится в лед, не проводящий электрический ток. Сами замеры производятся мегаомметром, внесенным в госреестр приборов, разрешенных для измерения сопротивления изоляции кабелей и проходящим ежегодную поверку.
Перед началом измерений следует обесточить линию, убедиться в отсутствии напряжения на тестируемом кабеле. Другой конец кабеля отключается от потребителя, жилы его разводятся на максимальное расстояние, а рядом выставляется человек для предотвращения непредвиденных ситуаций. Также вывешиваются запрещающие («Не включать, работают люди!») и указательные («Заземлено») плакаты. Непосредственно измерение производится мегомметром на 2500 В в течении 1 мин в нижеприведенной последовательности:
- Измерение сопротивления между фазными жилами: (А-В, В-С, А-С).
- Между фазными жилами и нулем: (А-N, В-N, С-N).
- В случае. если кабель пятижильный, также замеряют сопротивление между жилами и землей (А-РЕ, В-РЕ, С-РЕ).
- Между нулем и землей, предварительно отключив нуль от шинки (N-PE).
Мегаомметр цифровой 2500 В
По окончания измерений результаты записываются и сравниваются с допустимыми значениями, после чего составляется протокол, в котором отображаются:
- последовательность произведенных действий;
- тип использовавшихся для измерений средств;
- температурный режим.
В конце пишется заключение о состоянии кабелей.
Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей
Высоковольтными силовыми кабелями называют кабели с напряжением 1000 В и выше. Сопротивление изоляции высоковольтных силовых кабелей должно быть не ниже 10 МОм (10 000 000 Ом).
Высоковольтные силовые кабеля
Условия и подготовка к измерениям такие же, как и при измерении низковольтных силовых кабелей: отключается электропитание и потребители, учитывается температура воздуха (также не ниже +5), вывешиваются плакаты и оставляется человек у другого конца испытуемого кабеля.
Алгоритм измерения высоковольтных кабелей отличается от низковольтного, измерения тут проводят не непосредственно между жилами, а между жилой и землей, предварительно заземлив прочие жилы.
Измерение производится как и в случае проверки низковольтного кабеля мегомметром на 2,5 кВ в нижеприведенной последовательности. Каждое измерение должно длиться по 1 минуте.
- Заземлить все жилы кабеля.
- Один зажим мегомметра подключить на землю, второй — на проверяемую жилу.
- Заземлить проверенную жилу и снять заземление со следующей проверяемой.
Вышеописанные действия повторяются с каждой проверяемой жилой, проверенные при этом нужно обязательно заземлять, делается этого для того. чтобы снять остаточное либо наведенное напряжение. Как и в случае с низковольтным кабелем, данные записываются и протоколируются.
Измерение сопротивления изоляции контрольных кабелей
Контрольными называют кабели, не предназначенные для работы в цепях с большой нагрузкой. В основном они предназначены для работы во вторичных цепях и управления различными коммутационными устройствами — реле, пускателями, а также устройствами контроля и защиты.
Сопротивление изоляции контрольных кабелей должно быть не менее 1 МОм.
Подготовительные работы те же, что и при измерении прочих типов кабеля:
- Отключение питания.
- Проверка отсутствия напряжения.
- Вывешивание табличек) — обязательны!
Измерение производится также мегомметром на 2500 В по тому же алгоритму, что и высоковольтные кабели, единственным отличием является необязательность отключения потребителей. Как и в предыдущих случаях, время измерения сопротивление каждой жилы составляет 1 минуту. По завершении измерительных работ результаты также записываются, а в конце составляется протокол и заключение о допустимости дальнейшей эксплуатации кабеля.
Нормы сопротивления изоляции кабеля
Для сопротивления изоляции кабеля существуют определенные госты, приведенные в данной таблице:
Наименьшее допустимое сопротивление изоляции аппаратов вторичных цепей и электропроводки
Нормы сопротивления изоляции для различных кабелей
- Высоковольтные силовые кабели — сопротивление не нормировано, но не не ниже 10 МОм.
- Низковольтные силовые кабели — не менее 0,5 МОм.
- Контрольные кабели — не ниже 1 МОм.