Проводники электрического тока

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У одного из них напор сильнее, у другого слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

Электрический ток — это направленное движение заряженных частиц.

Удельное сопротивление

Способность лучше или хуже проводить ток определяется удельным сопротивлением — ⍴ (ро). Вот удельные сопротивления некоторых металлов, применяемых в электротехнике.

Металл

Удельное сопротивление при 20°С, х10-8 Ом∙м

Серебро

1,6

Медь

1,7

Золото

2,3

Алюминий

2,8

Вольфрам

5,5

Сталь

12

Нихром

110

Удельное сопротивление зависит от температуры. Чем она ниже, тем сопротивление меньше. Объясняется это тем, что с уменьшением температуры электроны меньше совершают хаотичных движений и меньше сталкиваются. При температуре абсолютного нуля (-273˚С) движение прекращается. У большинства материалов при этом способность проводить ток резко исчезает, но у некоторых возникает явление сверхпроводимости, когда удельное сопротивление равно нулю. При этом величина тока в проводнике ничем не ограничивается.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

Процессы в электропроводниках

Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.

Электрический ток

Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.

Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы. Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция. Поэтому проводники покрывают слоем лака или другого защитного материала.

Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.

Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10-5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Связь между силой тока и скоростью движения зарядов

Рассмотрим металлический проводник. Мысленно выделим в нем два сечения площадью \(\large S \) на некотором расстоянии \(\large \Delta x\) одно от другого. Сечения располагаются поперечно проводнику.

В металлах электрический ток создается электронами. Обозначим \(\large e_{0}\) заряд каждого электрона.

Проводники электрического токаРис. 10. Свободные заряды в объеме проводника

Заряды в проводнике, под действием электрического поля напряженностью \(\large \vec{E} \) будут двигаться сонаправленно, от сечения к сечению.

При этом, они будут проходить путь \(\large \Delta x\) между двумя сечениями.

Если ток постоянный, то скорость движения зарядов изменяться не будет.

В таком случае, расстояние \(\large \Delta x\) и скорость \(\large v\) движения электронов будут связаны формулой равномерного движения.

\

\(\large \Delta x \left( \text{м}\right) \) – расстояние между двумя поперечными сечениями;

\(\large v \left( \frac{\text{м}}{c}\right) \) – скорость, с которой сонаправленно движутся заряды в проводнике; Эта скорость значительно меньше скорости теплового движения.

\(\large \Delta t \left( c \right) \) – интервал времени, за который пройдено расстояние \(\large \Delta x\) между двумя поперечными сечениями;

Популярные статьи  Диэлектрики в электрическом поле

Выразим из этой формулы время движения:

\

Это выражение нам понадобится далее.

Сечения \(\large S \)  и расстояние между ними \(\large \Delta x\) образуют в проводнике цилиндрический объем:

\

\(\large V \left( \text{м}^{3}\right) \) – объем цилиндра;

В этом объеме содержится определенное количество электронов. Обозначим это количество: \(\large N \) штук.

Количество штук \(\large N \), расположенное в объеме \(\large V\), называют концентрацией:

\

\(\large n \left( \frac{\text{штук}}{\text{м}^{3}}\right) \) – концентрация зарядов в объеме;

Найдем общий заряд всех заряженных частиц, расположенных в объеме \(\large V\) между двумя поперечными сечениями:

\

Умножим правую часть уравнения на единицу, которую представим в виде дроби \(\displaystyle \frac{V}{V}\), в которой \(\large V\) – это рассматриваемый объем. Тогда полный заряд можно записать в таком виде:

\

Числитель V дроби и количество N частиц поменяем местами.

\

Подставим в эту формулу выражение для объема:

\

Дробь в правой части заменим символом «n» концентрации:

\

Средняя скорость совместного направленного движения зарядов \(\large v\).

Применим определение силы тока:

\

Подставим в это выражение формулу для общего заряда, прошедшего через сечение проводника:

\

Выражение для удобства можно переписать так:

\

Мы заранее выразили время \(\large \Delta t \):

\

Найдем для него обратную величину:

\

Подставим ее в формулу для тока:

\

Расстояние \(\Delta x\) находится в числителе и в знаменателе, оно сократится. Окончательно получим выражение для связи между силой тока и скоростью движения зарядов:

\

Теперь можно утверждать, что

  • чем больше зарядов помещаются в объеме,
  • чем быстрее они сонаправленно двигаются
  • и, чем толще проводник (чем больше площадь поперечного сечения),

тем больше ток.

Типы электрических проводников

Существуют разные категории электрических проводников, и, в свою очередь, в каждую категорию входят материалы или среды с наивысшей электропроводностью.

По своему качеству лучшие электрические проводники — это твердые металлы, среди которых выделяются медь, золото, серебро, алюминий, железо и некоторые сплавы.

Однако есть другие типы материалов или растворов, которые обладают хорошими свойствами электропроводности, например графит или солевые растворы.

В зависимости от способа проведения электропроводности можно выделить три типа материалов или проводящих сред, которые подробно описаны ниже:

Проводники в электростатическом поле

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Рис. 1

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

Рис. 2

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Рис. 3

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q:

\(F = q \cdot E.\)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Вся правда о Мифах

Серебро.

Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь — второй по проводимости элемент — намного дешевле.

Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.

Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество — десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.

И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.

Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.

Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.

Во-вторых, существует такая болезнь — аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.

Популярные статьи  Ремонт кабельных линий

С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плава тельных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.

Вода — исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы Н2O, а растворенные в воде химикаты — например, соль.

Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.

Сила тока по определению

Постоянный ток можно рассматривать, как равномерное направленное движение заряженных частиц. Равномерное – значит, с одной и той же скоростью.

Если же ток изменяется, то будет изменяться и скорость движения зарядов.

Сила тока – это:

  1. физическая величина;
  2. отношение заряда, прошедшего через поперечное сечение проводника к длительности промежутка времени, в течение которого заряд проходил.

Для постоянного тока используем формулу:

\

\(\large I \left(A\right)\) – ток (сила тока) в Амперах;

\(\large \Delta q \left( \text{Кл}\right) \) – заряд в Кулонах, прошедший через поперечное сечение проводника;

\(\large \Delta t \left( c\right) \) – промежуток (кусочек) времени, в течение которого заряд прошел;

\

Если хотя бы одна из характеристик изменяется, ток называют переменным. Он будет различным в разные моменты времени. Если задано уравнение, описывающее, как изменяется заряд, то для вычисления такого тока удобно пользоваться производной.

Исключаем путаницу с понятием силы

В физике исторически сложилось использование таких терминов, как

  • сила тока,
  • электродвижущая сила,
  • лошадиная сила.

Эти единицы измерения имеют в своем названии слово «сила». Из механики известно, что сила – величина векторная, измеряется в Ньютонах. Однако, пусть это не вводит вас в заблуждение.

Ни одна из описанных величин не измеряется в Ньютонах. Перечисленные величины имеют другие единицы измерения:

  • силу тока измеряют в Амперах,
  • электродвижущую силу – в Вольтах,
  • а лошадиная сила – это единица измерения мощности, ее можно перевести в Ватты в системе СИ.

Чтобы исключить путаницу, вместо термина «сила тока», можно употреблять слово «ток». Сравните выражения: «Силу тока измеряют в Амперах» и «ток измеряют в Амперах».

Как видно, вполне можно обойтись словом «ток», вместо «силы тока». Смысл от этого не изменится.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Проводники электрического тока

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Электропроводность древесины

Способность древесины сопротивляться прохождению через неё электрического тока характеризует такое её свойство, как электропроводность. Электропроводность — это, по другому, способность древесины проводить электрический ток. Таким образом делаем вывод : чем выше сопротивление древесины, тем меньше(хуже) она проводит ток.

Электропроводность древесины зависит от породы дерева, направления волокон и от влажности образца.

Сухая древесина является почти диэлектриком, т.е. практически не проводит ток. Когда-то из сухого дуба даже делали платы для электрических схем. А корпуса радио и телеприёмников из дерева или из фанеры помнят очень многие люди до сих пор. Да и на плакатах по мерам безопасности всегда был нарисован мужчина, снимающий оголённый электропровод с поражённого током деревянной рейкой.

Существуют понятия поверхностного и объёмного сопротивления. Они характеризуют, соответственно, прохождение тока по поверхности и внутри образца. Эти два вида сопротивления в сумме дают полное сопротивление древесины.

Сопротивление древесины снижается с увеличением влажности. Например, сопротивление сосны при влажности 0% равно 2,3 х 10 15 ом/см , а при влажности 20% — 3 х 10 8 ом/см. А поверхностное сопротивление , например, бука при увеличении влажности с 4,5% до 17% уменьшается с 1,2 х 10 13 до 1 х 10 7 ом.

Опытным образом установлено, что увеличение влажности в границах от 0% до 30% приводит к снижению сопротивления в миллионы, а больше 30% в десятки раз.

Неодинаково сопротивление вдоль и поперёк волокон. Любая древесина проводит электричество вдоль волокон в несколько раз лучше, чем поперёк. Но в абсолютных величинах эта разница не столь уж и существенна.

Увеличение температуры древесины также приводит к снижению её сопротивления и , соответственно, к увеличению электропроводности.

На зависимости электропроводности от влажности основан метод измерения степени влажности древесины электрическим способом, так называемыми электровлагомерами. А с учётом вышесказанного можно объяснить неточность измерений этим способом при влажности пиломатериалов выше 30%.

Источник

Почему диэлектрики не проводят электрический ток

Низкая проводимость обусловлена строением молекул диэлектрика. Частицы вещества тесно связаны друг с другом, не могут покинуть пределы атома и перемещаться по всему объёму материала. Под воздействием электрического поля частицы атома способны слегка расшатываться — поляризоваться.

В зависимости от механизма поляризации, диэлектрические материалы подразделяются на:

  • неполярные — вещества в различном агрегатном состоянии с электронной поляризацией (инертные газы, водород, полистирол, бензол);
  • полярные — обладают дипольно-релаксационной и электронной поляризацией (различные смолы, целлюлоза, вода);
  • ионные — твёрдые диэлектрики неорганического происхождения (стекло, керамика).

Диэлектрические свойства вещества непостоянны. Под воздействием высокой температуры или повышенной влажности электроны отрываются от ядра и приобретают свойства свободных электрических зарядов. Изоляционные качества диэлектрика в этом случае понижаются.

Надёжный диэлектрик — материал с малым током утечки, не превышающим критическую величину и не нарушающим работу системы.

Характеристики

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц. Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света.

За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Разряд молнии – пример природного электричества

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

Популярные статьи  Как зависит сопротивление от температуры

Проводники электрического тока

Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.

Опыт Мандельштама и Папалекси

Электронную природу тока в металле первыми экспериментально доказали российские физики Мандельштам и Папалекси в 1913 г. Для того, чтобы выяснить, какие частицы создают электрический ток в металлах, они — без подключения внешнего источника — регистрировали ток в катушке из металлического провода, которую сначала сильно раскручивали вокруг собственной оси, а затем резко останавливали. Поскольку у электрона есть масса, то он должен подчиняться закону инерции. Поэтому в момент остановки атомы решетки останутся на месте, а свободные электроны по инерции, какое-то время, продолжат движение в прежнем направлении. То есть в цепи должен появиться электрический ток. Эксперименты подтвердил это предположение — после остановки катушки исследователи регистрировали бросок тока в цепи.

Проводники электрического тока

Рис. 2. Опыт Мандельштама и Папалекси.

$$ {e_э over m_э } = 1,8*10^{11} Кл/кг $$

Этот фундаментальный результат совпал с полученными данными из других экспериментов, поставленных на основе измерения других параметров. Впервые эту величину в 1897 г. измерил англичанин Джозеф Томсон по отклонению пучка электронов в зависимости от напряженности электрического поля.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Проводники электрического тока Таблица электрический ток в различных средах.

  • Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.
  • Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.
  • Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока». Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Проводники электрического тока Передача тока по проводам

Что такое 1 Ампер в системе СИ

Сила тока в 1 Ампер была определена в системе СИ с помощью силы взаимного действия двух проводников с током.

Рассмотрим два тонких проводника (рис. 9). Каждый проводник имеет бесконечную длину. Расположим их в вакууме параллельно на расстоянии 1 метр один от другого.

Проводники электрического токаРис. 9. Эталон силы тока 1 ампер в системе СИ

Выделим на каждом проводнике кусочек длиной 1 метр.

Если проводники взаимодействуют с силой \(\large 2 \cdot 10^{-7} \) Ньютона, приходящейся на каждый метр их длины, то по каждому из них течет постоянный ток 1 Ампер.

Ампер – это основная единица в системе СИ. А Кулон – величина, определяемая с помощью Ампера.

Простейшие электрические расчеты нагревательных элементов

Электронагреватели широко используются в бытовых электроприборах: чайниках, утюгах, каминах, плитках, паяльниках и т. д. Тепловое действие тока. При прохождении электрического тока через неподвижные металлические проводники единственным результатом работы тока является нагревание этих проводников, и, следовательно,по закону сохранения энергии вся работа, совершенная током, превращается в тепло.

Работа (в джоулях), совершаемая током при прохождении его через участок цепи, вычисляется по формуле:

  • U — напряжение, В;
  • I — сила тока, А;
  • t- время, с.

Количество теплоты (Дж), выделенное в проводнике при прохождении по нему электрического тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока и вычисляется по закону Джоуля — Ленца:

где R — сопротивление проводника, Ом.

Произведем расчет количества теплоты, необходимой для того, чтобы вскипятить воду в чайнике, вмещающем 2 л. Напряжение сети U=220 В. Ток, потребляемый электрочайником, I= 4 А. Определить время закипания воды в чайнике, если КПД его 80% и начальная температура воды 20° С.

  • U=220 В;
  • I=4 А;
  • m=2 кг;
  • КПД=0,8;
  • t=20° С;
  • tкип = 100° С.
  • Удельная теплоемкость воды С=4200.

Определим количество теплоты, необходимое для нагрева воды до температуры кипения.

Qпол = cm (tкип — t0) = 4200 * 2(100 — 20) = 672 000 Дж.

Определим общее количество теплоты, которое должен выделить нагревательный элемент электрочайника, с учетом потерь на нагрев керамики, корпуса чайника и внешней среды:

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: