Динамическое торможение двигателя

Текст

,Ч. Кл. Н 02 р 3/2 Гасударственный комитет Совета Министрав СССР оа долам изааретений и открытийПриоритет Опубликовано 03.Х.1973. Бюллетень ЛЪДата опубликования описания 12.11.1974 УДК 621,316.719(088,8) Авторизобретения В. И, ашкал аявите Н НОГО ТОРМОЖТРОДВИ ГАТЕЛ о тормо- беспечиигателей рной баятую емтем, чтоическую 10 аторной е двига схе леи отся его 2его копредеПредмет изоб ен ия 5 заатывает, юченного ечивают игади тся,СПОСОБ КОНДЕНСАТО АСИ НХРО Н Н ЪХ ЭЛИзобретение относится к области тормония асинхронных двигателей.Известные системы конденсаторногжения асинхронных двигателей не овают условий самовозбуждения двпри использовании общеи конденсатотареи и включение двигателей на занкость.Описываемый способ отличаетсякратковременно прерывают электрсвязь тормозных двигателей с конденсбатареей и затем вновь подключает встеди к этой батарее.На фиг. 1 изображена принципиальнаяма устройства для трех двигателей для оществлени я описываемого способа;фиг. 2 — схема управления торможенасинхронных электродвигателей.После отключения одного из двигатесети, например двигателя 1, включаеттормозной контактор 2 и присоединяетконденсаторной батарее 3 на время,ляемое выдержкой реле 4. При этом в цкатушки реле совместного торможенмыкается контакт 6, но реле не срабтак как из-за последовательно вклрезистора 7 ампервитки реле не обесппритягивания якоря реле.Если в процессе торможения первого двтеля к конденсаторной батарее 3 присоеняется второй двигатель 8, то оказывае что в цепи катушки реле 5 два резистора 7 и 9 включены параллельно. Это приводит к увеличению тока катушки и срабатыванию реле 5. Последнее размыкает контакт в цепи катушки контактора 10. Вслед за этим включается реле 11, шунтируя контакт контактора 10 в своей цепи, а затем — реле 12, Оно шунтирует разомкнувшийся вначале контакт контактора 13 в цепи катушки 14. Благодаря этому контактор 10 включается вновь.Кратковременное отключение контактора 10 приводит к уравниванию напряжений статора обоих электродвигателей соединительными проводниками, в связи с чем прн повторном включении контактора 10 условия самовозбуждения обоих двигателей существенно улучшаются и торможение их протекает нормально. Способ конденсаторного торможения асинхронных электродвигателей, отличаюи 1 ийся тем, что, с целью улучшения условий самовозбуждения двигателей при использовании общей конденсаторной батареи и включении двигателей на занятую емкость, кратковременно прерывают электрическую связь тормозимых двигателец с конденсаторной батареей и затем вновь подключают все двигатели к упомянутой батарее.390986 Составитель Ч, Иаздю ПодписпоСР якяз 28,1 И погряфин, пр, Сапунова, 2 Изд. ГА 81 Государственного коми по лелям изобрете Москва, Ж.35, РаунТираж 755 тета Совета Министро пй и открытий скан паб д. 4/5

Смотреть

Способы электрического торможения электроприводов

Для того чтобы быстро остановить устройство или обеспечить постоянную скорость вращения используют электрические способы остановки. В зависимости от схемы включения тормозные режимы подразделяют на:

  • противовключения;
  • динамический;
  • рекуперативный.

Противовключения

Режим противовключения применяется при необходимости быстрой остановки механизма. Представляет собой смену полярности на обмотке якоря двигателя постоянного тока или переключения двух фаз на обмотках асинхронного электродвигателя.

В этом случае ротор вращается в противоположном направлении магнитного поля статора. Вращение ротора замедляется. При скорости вращения близкой к нулю с реле контроля скорости поступает сигнал, отключая механизм от сети.

На нижеприведенном рисунке представлена схема противовключения асинхронного электромотора.

Динамическое торможение двигателя

После переключения обмоток возникает повышенное действующее напряжение и увеличение тока. Для его ограничения, в обмотки ротора или статора устанавливают дополнительные резисторы. Они ограничивают токи в обмотках в режиме торможения.

Динамическая остановка электропривода

Этот способ применяют на асинхронных машинах, подключенных к сети переменного тока. Он заключается в отключении обмоток от сети переменного напряжения и подачи постоянного тока на обмотку статора.

Динамическое торможение двигателя

На вышеприведенном рисунке представлена схема торможения трехфазного двигателя постоянным током.

Подача постоянного напряжения осуществляется с помощью понижающего трансформатора для динамического торможения. Пониженное переменное напряжение преобразуется в постоянное диодным мостом и подается на статорную обмотку. Для торможения электромотора может применяться дополнительный источник постоянного тока.

При этом ротор может быть выполнен в виде «беличьей клетки» или ее обмотку подключают к добавочным резисторам.

Постоянное напряжение создает неподвижный магнитный поток. При вращении ротора в нем наводится ЭДС, т.е. электромотор переходит в режим генератора. Возникающая электродвижущая сила рассевается на обмотке ротора и добавочных резисторах. Создается тормозной момент. В момент остановки механизма постоянное напряжение отключается по сигналу реле скорости.

Механизмы, где применяется электродвигатель с самовозбуждением, динамическую остановку выполняют с помощью подключения конденсаторов. Они соединяются треугольником или звездой.

Схема приведена на нижеприведенном рисунке.

Динамическое торможение двигателя

На выбеге остаточная энергия магнитного поля переходит в заряд конденсаторов, а затем она питает обмотку статора. Возникающий тормозной эффект останавливает механизм. Конденсаторная батарея может быть подключена постоянно или подсоединяться в момент отключения от сети. Такая схема получила название “конденсаторное торможение асинхронного двигателя”.

Если необходимо быстро остановить двигатель, то после отключения от сети, замыкают контакты накоротко без гасящих резисторов. При соединении обмоток закорачиванием в них возникают большие токи. Для уменьшения токов к обмоткам подключают токоограничивающие резисторы.

На нижеприведенном рисунке представлена схема с токоограничивающими резисторами.

Динамическое торможение двигателя

5.15. ДВУХФАЗНЫЙ КОНДЕНСАТОРНЫЙ ДВИГАТЕЛЬ

Двухфазный конденсаторный
двигатель имеет на статоре две обмотки ОВ и ОУ, рассчитанные на длительное протекание
тока. Обмотки располагаются в пространстве под углом 90 эл. градусов), а последовательно
одной из них включают конденсатор С.

Двухфазный конденсаторный
двигатель переменного тока обладает вращающимся магнитным полем (правда, не
круговым, а эллиптическим). Поэтому он не нуждается в специальных пусковых устройствах
(рис. 5.15 1.).

Динамическое торможение двигателя

Двухфазный асинхронный
двигатель, в отличие от трехфазного, имеет возможность плавного регулирования
частоты вращения ротора.

Делается это одним из двух
способов: амплитудным (изменением напряжения Uy) и фазным (изменением емкости
конденсатора С).

Двухфазные двигатели получили
широкое распространение в бытовых приборах и лабораторной практике.

В отличие от рассмотренных
выше типов двигателей, интересен двигатель с полым ротором. Он имеет два статора,
между которыми располагается ротор (рис. 5.15.2.).

Динамическое торможение двигателя

Наружный статор 1 имеет
обычно конструкцию с двухфазной обмоткой 4. Фазные обмотки сдвинуты в пространстве
относительно друг друга на 90°. Внутренний статор 3 представляет
собой пакет электротехнической стали без обмотки. В воздушном зазоре между
статорами помещен ротор двигателя 2, который не имеет обмотки и выполнен в виде
стакана с тонкими стенками из немагнитного материала (алюминия). Посредством
втулки 6 ротор укреплен на валу двигателя 5. Такая конструкция обеспечивает
ему незначительную инерцию и делает двигатель чувствительным даже к небольшим
импульсам (сигналам) тока. Этому также способствует наличие второго статора,
который уменьшает сопротивление магнитной цепи. Одна из фаз обмоток статора
включается на напряжение сети Uс, другая является управляющей обмоткой.
Когда напряжение на ней отсутствует, ротор неподвижен. С появлением управляющего
сигнала Uу достаточной величины статор создает двухфазное вращающееся
поле, и двигатель развивает вращающий момент, величина которого пропорциональна
Uc.

Популярные статьи  Панели оператора для применения с контроллерами

Работа этого двигателя
основана на взаимодействии магнитного поля статора с вихревыми токами, наведенными
на поверхность полого ротора.

Машины с полым ротором
весьма чувствительны к изменениям напряжения сигнала и его продолжительности,
что дает возможность применять их в качестве исполнительных двигателей.

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

Схема торможения однофазного асинхронного двигателя

Торможение однофазным переменным током. Для его осуществления необходимо одну фазу статора асинхронного двигателя отключить от сети, после чего замкнуть её на другую.

Динамическое торможение двигателя

Рисунок 1 — Схема подключения при однофазном торможении

Вращающееся поле этом перестает существовать, но образуется пульсирующее поле, ось его пульсаций проходит вдоль той фазы, которая не подвергалась никаким изменениям. Всякое пульсирующее поле можно разделить на 2 поля, вращающееся с одинаковой скоростью, но в противоположных направлениях. Каждая из них у АД создает свой асинхронный момент.

Динамическое торможение двигателя

Рисунок 2 — Суммарная механическая характеристика

Таким образом получить тормозной момент у АД с короткозамкнутым ротором этим способом не возможно, это видно из графика, создается только двигательный момент, но меньшей мощности. Тормозной момент можно получить только в двигателе с фазным ротором, введя большое сопротивления в фазу ротора.

Динамическое торможение двигателя

Рисунок 3 — Суммарная характеристика с введенным сопротивлением в цепь ротора

Механические характеристики по виду схожи с характеристиками, полученными при динамическом торможении.

Преимущества такого вида торможения АД:

– нет необходимости в источнике постоянного тока.

– неприемлем для АД с короткозамкнутым ротором;

– малый тормозной момент.

Для его осуществления статор вращающегося двигателя отключают от сети, и замыкают на конденсаторную батарею, соединенную в треугольник либо звезду.

Динамическое торможение двигателя

Рисунок 4 — Схема конденсаторного торможения

Конденсаторная батарея обычно остается подключенная и при нормальной установившейся работе машины в двигательном режиме. При отключении двигателя от сети, он будет работать как асинхронный генератор с самовозбуждением. Реактивная мощность для самовозбуждения потребляется от конденсаторной батареи, которая создает свое вращающееся поле. Однако его скорость оказывается меньше скорости вращения ротора АД, таким образом тормозной эффект имеет место лишь до момента уравновешивания этих скоростей. По этому этот вид торможения эффективен при больших скоростях двигателя, а при малых скоростях тормозной момент либо мал, либо исчезает вообще. Для повышения эффективности вводят сопротивление в фазы ротора, иначе при чисто емкостном торможении двигатель не остановится.

Динамическое торможение двигателя

Рисунок 5 — Конденсаторное торможение

С уменьшением емкости абсолютное значение момента увеличится, но торможение будет происходить на больших скоростях.

– Достаточный тормозной эффект имеет место лишь при больших скоростях;

– способ требует наличие конденсаторной батареи большой емкости;

– для полной остановки необходимо применять вместе с динамическим торможением.

Конденсаторное торможение отличается от рекуперативного и динамического тем, что оно не требует возбуждающей энергии из сети.

Потери энергии в АД при конденсаторном торможении на порядок меньше по сравнению с динамическим, рекуперативным и другими видами торможения, в следствии чего такое торможение рекомендуется для электроприводов с частым включением.

Источник

5.18.6 Поворотные трансформаторы

Так называют электрические машины переменного тока,
предназначенные для преобразования угла поворота q в напряжение,
пропорциональное некоторым функциям угла поворота ротора sinq
или cosq, а также самому углу q. Их применяют в вычислительной
технике для выполнения различных математических операций. С помощью поворотных
трансформаторов решают геометрические задачи, связанные с построением треугольников,
преобразованием координат, разложением и построением векторов. В системах автоматического
регулирования поворотные трансформаторы используют в качестве измерителей расстояния,
фиксирующих отклонение системы от некоторого определенного положения.

Конструктивно поворотный трансформатор представляет
собой асинхронную машину малой мощности. На статоре ее перпендикулярно размещены
две обмотки: C1-C2 и С34.
Первая получила название главной, а вторая — квадратурной. Обмотки статора выполняются
одинаковыми, т.е. с одинаковым числом витков. На роторе может быть одна обмотка,
но чаще их бывает две. На рис. 5.18.6.1. приведены схемы включения синусного,
косинусного и синусно-косинусного поворотных трансформаторов.

Динамическое торможение двигателя

Возможно ли торможение двигателем на автомате

В предыдущем разделе мы разобрались, что для снижения скорости движения за счет мотора на машине с механической коробкой нужно последовательно переходить на пониженную передачу. Теперь давайте рассмотрим, возможно ли торможение двигателем на АКПП?

Динамическое торможение двигателя

Автоматические КПП отличается более сложной конструкцией и меньшим сроком службы в сравнении с механикой. Автоматы состоят из планетарных и фрикционных механизмов, масляного насоса и других элементов. При этом взаимодействие с мотором обеспечивает гидротрансформатор. На автомобиле с АКПП также можно осуществлять торможение двигателем, но менее эффективно в сравнении с механической трансмиссией.

По своей форме гидротрансформатор напоминает спасательный круг, внутри которого установлены две турбины, помещенные в масляный резервуар. Между турбинами отсутствует прямая механическая связь, но при вращении одной из них лопатки начинают направлять потоки масла по кругу и приводят в движение другую. Именно так происходит передача вращательного момента.

Когда авто набирает скорость, гидравлическая муфта блокируется, валы начинают вращаться синхронно, вращательный момент передается напрямую. Когда происходит торможение двигателем, блокировка гидромуфты отключается на скорости около 50-60 км/ч. В этот момент начинает работать масляный демпфер, сглаживающий нагрузки. Гидравлическая муфта эффективно компенсирует даже высокие нагрузки на АКПП, защищая коробку от повреждений. В гидротрансформаторе допускается разное вращение входного и выходного валов без ущерба для всего механизма. В то же время сглаживание нагрузок негативно отражается на эффективности снижения скорости, поэтому машина с автоматом тормозит двигателем намного медленнее, чем авто с механической трансмиссией.

Популярные статьи  Параметры полевых транзисторов: что написано в даташите

Покупателям машин с автоматической коробкой нужно хорошо изучить эксплуатационную инструкцию, уделяя особенное внимание режимам работы трансмиссии. Для некоторых типов автоматических коробок конструкторы вообще не предусматривают торможение мотором, а в других моделях АКПП такой режим блокирует электронная система управления

Существуют модификации «автоматов», у которых режим торможения двигателем начинает работать без участия водителя. В некоторых моделях АКПП для снижения скорости авто за счет мотора предусмотрена функция ручного переключения передач.

В качестве примера рассмотрим один из возможных вариантов торможения двигателем на машине с АКПП:

  1. Нужно включить режим overdrive, после чего АКПП переключится на 3-ю скорость.
  2. Когда скорость движения снизится, следует установить 2-ю передачу, что будет способствовать процессу торможения.
  3. Рычаг АКПП надо поставить в положение «L», которое соответствует 1-й передаче.

Во время движения автомобиля рычаг АКПП можно устанавливать только в положения «D-2-L», включение других скоростей может привести к поломке коробки (категорически нельзя на ходу использовать позиции «R» и «P»).

В большинстве случаев электронные системы сами управляют работой АКПП. Так, на высокой скорости электроника не даст возможности принудительно переключиться на 1-ю передачу.

Технология торможения мотором на авто с гидромеханической АКПП напоминает езду на механике с не полностью выключенным сцеплением (передача включена, мотор гудит, но скорость сбрасывается не так эффективно). Машина, двигаясь на спуске, катится все быстрее, поэтому водителю приходится регулировать ее скорость педалью тормоза.

Динамическое торможение двигателя

Исходя из вышеизложенной информации, можно сделать вывод, что автомобили, оснащенные автоматическими коробками, умеют тормозить мотором и имеют электронные системы, защищающие от поломок. Кроме того, нагрузки, передающиеся от колес на АКПП, гасятся гидромуфтой, а следовательно, повредить трансмиссию при движении на спуске невозможно. В то же время автоматическая трансмиссия не может обеспечивать эффективное торможение двигателем, поэтому не стоит особенно щадить тормозные диски и колодки.

Если же в инструкции к машине в автомат-коробкой указано, что для данной модификации не предусмотрен режим торможения мотором, то использовать такой прием следует только в случае крайней необходимости, чтобы не сократить срок службы дорогостоящей АКПП.

Подводя итоги, отметим, что прием торможения мотором более эффективен для авто с механической КПП, так как в этом случае обеспечивается жесткое сцепление шестеренок трансмиссии. При управлении машиной с коробкой автомат следует больше полагаться на тормозную систему.

Схемы конденсаторного торможения электродвигателей

Конденсаторное торможение асинхронных двигателей

На рисунке приведена схема включения двигателя при конденсаторном торможении. Параллельно обмотке статора включают конденсаторы, обычно соединенные по схеме треугольника.

При отключении двигателя от сети токи разряда конденсаторов создают магнитное поле, вращающееся с низкой угловой скоростью. Машина переходит в режим генераторного торможения, частота вращения снижается до значения, соответствующего частоте вращения возбужденного поля. Во время разряда конденсаторов появляется большой тормозной момент, который с уменьшением частоты вращения падает.

В начале торможения происходит быстрое поглощение запасенной ротором кинетической энергии при малом тормозном пути. Торможение резкое, ударные моменты достигают 7 Мном. Значение пика тормозного тока при самых больших значениях емкости не превышает пускового тока.

С ростом емкости конденсаторов тормозной момент увеличивается и торможение длится до более низкой частоты вращения. Исследования показали, что оптимальное значение емкости лежит в пределах 4 — 6 Сном. Конденсаторное торможение прекращается при частоте вращения 30 — 40% номинальной, когда частота вращения ротора становится равной частоте вращения поля статора от возникающих в статоре свободных токов. При этом в процессе торможения поглощается более 3/4 кинетической энергии, запасенной приводом.

Для полной остановки двигателя по схеме на рисунке 1,а необходимо наличие на валу момента сопротивления. Описанная схема выгодно отличается отсутствием переключающих аппаратов, простотой обслуживания, надежностью и экономичностью.

При глухом подключении конденсаторов параллельно двигателю можно применять только такие типы конденсаторов, которые рассчитаны на длительную работу в цепи переменного тока.

Если торможение осуществляется по схеме рисунке 1 с подключением конденсаторов после отключения двигателя от сети, возможно применение более дешевых и малогабаритных металлобумажных конденсаторов типов МБГП и МБГО, предназначенных для работы в цепях постоянного и пульсирующего тока, а также сухих полярных электролитических конденсаторов (КЭ, КЭГ и др.).

Конденсаторное торможение с глухо подключенными по схеме треугольника конденсаторами целесообразно применять для быстрой и точной остановки электроприводов, на валу которых действует момент нагрузки не менее 25% номинального момента двигателя.

Для конденсаторного торможения может быть применена и упрощенная схема: однофазное включение конденсаторов (рис. 1,6). Для получения такого же тормозного эффекта, как при трехфазном включении емкости, необходимо, чтобы емкость конденсатора в однофазной схеме была в 2,1 раза больше емкости в каждой фазе в схеме на рис. 1,а. При этом, однако, емкость в однофазной схеме составляет лишь 70% суммарной емкости конденсаторов при их трехфазном включении.

Потери энергии в двигателе при конденсаторном торможении наименьшие по сравнению с другими видами торможения, поэтому оно рекомендуется для электроприводов с большим числом включений.

При выборе аппаратуры следует учесть, что контакторы в цепи статора должны быть рассчитаны на ток, протекающий по конденсаторам. Для устранения недостатка конденсаторного торможения — прекращения действия до полной остановки электродвигателя — используют его сочетания с динамическим имагнитным торможением.

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором. Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения. Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение. На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Популярные статьи  Эксплуатация шинопроводов и троллеев

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.

Вариант остановки простым реверсивным переключением — реверс поля вращения, образованного обмотками статора

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

Видео настройки преобразователя частоты на торможение

Ниже представлен видеоролик, демонстрирующий наличие дефектов и ошибки частотного преобразователя в момент функции торможения двигателя. Здесь же отмечается — как устранить нарушение работы электродвигателя и, соответственно, ошибку ПЧ:

По материалам: Schneider-electric

Графический метод расчета пусковых реостатов

В основе графического метода лежит пусковая диаграмма двигателя. Пусковая диаграмма, представленная на рис. 13.14, совмещена с трехступенчатым пусковым реостатом; K1, К2 и КЗ являются контактами силовых контакторов, посредством которых осуществляется переключение ступеней реостата, а rдоб1, rдоб2 и rдоб3 — резисторы ступеней пускового реостата. Механические характеристики 1, 2, 3 соответствуют ступеням пускового реостата RПР1, RПР2 и RПР3. Значения начального пускового тока I1 и тока переключений реостатов I2 обычно принимают

I1 = (1,5…2,5)Iaном

I2 = (1,0…1,3)Iaном

при этом ток переключений I2 должен быть не меньше тока нагрузки, соответствующего статическому моменту сопротивления нагрузки МС, на вал двигателя. Для двигателей специального назначения, с тяжелыми условиями работы, например двигателей краново-металлургических серий, указанные значения токов могут быть увеличены.

Динамическое торможение двигателя

Динамическое торможение асинхронного двигателя

Динамическое торможение АД (торможение постоянным током) осуществляется путем подключения к двум любым обмоткам статора источника постоянного тока. При этом с помощью группы контактов К1 асинхронный двигатель сначала отключают от питания трехфазным переменным током, и только после этого, замыкают группу контактов К2 и подают постоянный ток. Величину постоянного тока регулируют сопротивлением rт (рисунок 1).

Рисунок 1 — Схема динамического торможения асинхронного двигателя

Само динамическое торможение асинхронного двигателя сопровождается следующими процессами и изменениями:

При отключении переменного тока, вращающееся магнитное поле перестает существовать. Далее подключают источник постоянного тока, который создает постоянное магнитное поле. Ротор по инерции продолжает крутиться теперь уже в постоянном магнитном поле, в обмотке ротора наводится ЭДС, ее частота прямо пропорциональна скорости вращения вала. Появление тока в обмотке ротора вызвано наличием вышеупомянутой ЭДС. Ток создает магнитный поток, который неподвижнен относительно статора. Взаимодействие результирующего магнитного поля АД и тока ротора создает тормозной момент. При этом асинхронный двигатель становится генератором; преобразовует кинетическую энергию вращающегося вала в электрическую, которая на обмотке ротора рассеивается в виде тепловой энергии. При переходе в режим динамического торможения частота и угловая скорость равны: f=0 w=0. Кривая динамического торможения должна проходить через начало координат и торможение происходит до полной остановки (рисунок 2).

Эффективность динамического торможения зависит от параметров:

— Величина постоянного тока, который протекает по статорной обмотке двигателя (чем больше ток, тем больше тормозной эффект);

— Величина сопротивления, введенного в цепь ротора. Эффективность торможения повышается путем комбинирования динамического торможения и торможения с введением сопротивлений в обмотку ротора (рисунок 2):

Рисунок 2 – Механическая характеристика динамического торможения асинхронного двигателя

Чем больше сопротивление введено в цепь ротора, тем выше эффективность торможения, то есть на кривой а1 изображена самая быстрая остановка двигателя при наибольшем сопротивлении — R1>R2>R3.

— Схема соединения обмоток статора.

Величина магнитодвижущей силы (F) напрямую связана с понятием эффективность торможения, чем больше значение силы – тем эффективней происходит торможение,

F=I·W.

На рисунках, которые изображены ниже, стрелками показаны направления протекания постоянного тока по обмоткам, IW– ампер витки (так как количество витков в обмотках одинаково, то зависит значение только от величины тока). Векторные диаграммы иллюстрируют направления магнитодвижущих сил (F), сложив по правилам суммирования векторы, мы получим результирующий вектор, который обозначен жирной стрелкой.

Обмотка статора может быть соединена:

а) Схема соединения обмотки статора в звезду:

б) Схема соединения статорной обмотки в треугольник:

в) Соединение обмотки статора в звезду с закороченными двумя фазами:

г) Подключение звезда с разорванным нулем:

д) Подключение треугольник с закороченными фазами:

Схемы соединения а) и б) имеют наибольшее распространение, потому что не требуют переключения при торможении самих обмоток.

Необходимо подметить, что напряжение (U) источника постоянного тока должно быть малой величиной, потому что сопротивление обмотки статора мало. Ток выбирается из условия необходимого начального тормозного момента, обычно выбирают ~2Mном.

Преимущества режима динамического торможения:

— Относительная простота осуществления способа;

— Возможность торможения до полной остановки вала ротора;

— Высокая эффективность торможения, особенно при использовании комбинированного метода.

Основным недостатком является необходимость наличия источника постоянного тока.

Расчет величины тормозного сопротивления:

RT = 2·rф.ст + rт,

rт=RT — 2rф.ст,

где RT — полное сопротивление цепи источника постоянного тока,

rф.ст — сопротивление фазы статора.

Вышеприведенные формулы являются частным случаем (для понимания отношений величин сопротивления), когда постоянный ток протекает только по двум обмоткам статора, если же ток будет протекать по трем обмоткам, то коэффициент (количество фаз) перед сопротивлением фазы статора нужно соответственно изменить.

Советую вам прочесть статью про торможение противовключением, в которой подробно расписан данный вид остановки двигателя.

Недостаточно прав для комментирования

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: