Что такое электроэнергия

Омы питающей сети

Внутреннее сопротивление источника электрической энергии учитывается для определения результирующей ЭДС. В общем виде электродвижущая сила рассчитывается по формуле E = I*R + I*r. Здесь R — сопротивление потребителей, а r — внутреннее сопротивление. Падение же напряжения высчитывают по следующей зависимости: U = E — Ir.

Что такое электроэнергия

Ток, протекающий в цепи, рассчитывают согласно закону Ома полной цепи: I = E/(R + r). Внутреннее сопротивление способно оказывать влияние на силу тока. Чтобы такого не происходило, источник подбирают под нагрузку по следующему правилу: внутреннее сопротивление источника должно быть намного меньше полного общего сопротивления потребителей. Тогда учитывать его величину совсем необязательно из-за малой погрешности.

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год — млрд. кВт*ч):

  • 1890 — 9
  • 1900 — 15
  • 1914 — 37,5
  • 1950—950
  • 1960—2300
  • 1970 — 5000
  • 1980 — 8250
  • 1990 — 11800
  • 2000 — 14500
  • 2005 — 18138,3
  • 2007 — 19894,8
  • 2013 — 23127
  • 2014 — 23536,5
  • 2015 — 24255
  • 2016 — 24816

Крупнейшими в мире странами-производителями электроэнергии являются Китай и США, вырабатывающие соответственно 25 % и 18 % от мирового производства, а также уступающие им в примерно 4 раза каждая — Индия, Россия, Япония.

Доля различных источников в мировом производстве электроэнергии, %
Год Уголь Газ ГЭС АЭС Нефть Прочие Всего, ТВт*ч
1973 38,3 12,1 20,9 3,3 24,8 0,6 6 131
2015 39,3 22,9 16,0 10,6 4,1 7,1 24 255

5 интересных фактов об электричестве

Факт 2

Ток, как известно, является движением заряженных частиц. Скорость электричества равна примерно 300 000 километров в секунду (скорость света). На самом деле, это скорость распространения электрического поля. Электроны в проводнике движутся гораздо медленнее. Их скорость составляет примерно 1 миллиметр в секунду.

Однажды в 1746 году ученый Жан-Антуан Нолле решил измерить скорость тока. Поставив 200 монахов в ряд, он соединил их проводами и дал разряд. В результате от удара током все монахи дернулись одновременно, из чего был сделан вывод, что скорость очень высокая. 

Факт 3

Первый автомобиль, работающий на электричестве, был построен еще в 19 веке. До того, как появился двигатель внутреннего сгорания. А в 1899 году именно на электромобиле был установлен рекорд скорости на суше – 100 км/ч (или 62 мили/ч).

Факт 4

Изобретение электрического стула связывают с именем Томаса Эдисона. На самом деле, это не совсем так, хотя Эдисон и приложил руку к этому делу. В конце 19 века шла так называемая война токов – конкуренция между Эдисоном (постоянный ток) и Теслой (переменный ток). В ход шли почти любые средства, и Эдисон показывал опасность переменного тока, демонстративно убивая им животных.

После того, как какой-то несчастный почти мгновенно погиб, прикоснувшись к проводам генератора на улице, люди задумались о новом гуманном способе казни. К слову, первая казнь на электрическом стуле не прошла гладко и быстро: его пришлось включать два раза.

Факт 5

Кроме убийства, электричество используется и для возвращения к жизни. При дефибрилляции (фибрилляция – судорожное сокращение мышц) через тело пропускают кратковременный разряд напряжением от 4000 до 7000 Вольт. Такая процедура помогает запустить человеческое сердце в нормальном ритме.

Хотите больше узнать об электричестве, электротехнике и научиться быстро решать задачи? Обращайтесь в профессиональный сервис помощи студентам за консультациями и оперативным решением учебных вопросов.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д

Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт)

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Советуем изучить Дезинфекционное освещение для обеззараживания и лечения заболеваний

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Электричество в природе

Примерами естественного электричества являются: 

  1. Молнии. Элементарные частицы воды в облаках сталкиваются друг с другом и приобретают положительный или отрицательный заряды. Положительно заряженные частицы за счет более легкого веса оказываются вверху облака, а отрицательные, более тяжелые, перемещаются вниз. Когда два таких облака находятся на близком расстоянии и на разной высоте, положительные заряды одного из них начинают взаимно притягиваться отрицательными частицами другого. В такой момент возникает явление молнии. То же самое происходит между облаками и поверхностью земли. 
  2. Электрические импульсы в нервной системе живых организмов, с помощью которых передается информация от одних клеток к другим. Эта способность позволяет живым существам реагировать на внешние раздражители, управлять движениями и мыслить.
  3. Специфические органы у рыб, скатов и угрей, с помощью которых они создают электрические заряды, охотясь на добычу и обороняясь от хищников. Некоторые виды рыб могут создавать вокруг себя электрическое поле, которое помогает искать пищу и ориентироваться в воде. 
Популярные статьи  Для чего нужен конденсатор

Схемы электроснабжения промышленных предприятий

Самая надежная, экономичная система электроснабжения – та, при которой источники наивысшего напряжения приближены к потребителям максимально, а прием электрической энергии распределяется по всем пунктам. При строительстве системы все ее элементы формируются под нагрузкой.  При этом, «холодный» резерв не применяется. Таким образом, потери электрической энергии снижаются, а надежность – возрастает. Почему это происходит? Резервные элементы, которые продолжительное время находились в бездействии, могут при включении не заработать из-за неисправного состояния. Для того чтобы избежать последствий данной ситуации, в схеме предусматривается «скрытый» резерв, который в послеаварийном состоянии сможет взять на себя основную нагрузку нерабочего элемента.

Возобновление питания потребителей происходит автоматически на переменном оперативном токе. В этом случае производится автоматическое отключение неисправных потребителей на послеаварийный период. Кстати, зачастую с успехом используется раздельная работа элементов. В таком случае ток короткого замыкания понижается и коммутация упрощается.

Автоматика обеспечивает надежность электроснабжения в раздельной работе.  Качество питания получается не хуже, чем при параллельной работе. Применяется секционирование всех элементов со схемами АВР (автоматическое включение резерва). Такой метод способствует увеличению надежности электроснабжения. К сожалению, не во всех случаях раздельная работа с АВР показывает необходимый результат. Добиться быстрого восстановления системы удается не всегда.

Схемы электрического снабжения формируются по ступеням, которые обозначают мощность предприятия и расположение электрических нагрузок. Чаще всего используются 2-3 ступени. Если их больше, то усложняются защита, эксплуатация, коммутация. Такие схемы применимы на периферийных участках, на отдельных трансформаторах.

Схемы с одной ступенью используются на малых и средних предприятиях, применяясь на:

  • магистральных, радиальных линиях глубоких проводов 110-220 кВ – мощность более 50 МВ-А;
  • магистральных, радиальных токопроводах 6-10 кВ – мощность более 15-80 МВ-А;
  • магистральных, радиальных кабельных сетях 6-10 кВ – мощность 15-20 МВ-А.

Схемы с более глубокими вводами, магистральными токопроводами требуют соблюдения некоторых моментов. Например, если есть возможность без труда реализовать принцип дробления подстанций и глубокие вводы 110 кВ, то нет нужды использовать токопроводы. В том случае, если расположение немалого числа подстанций 35-220 кВ, а прохождение воздушных линий глубоких вводов затруднено, то используются токопроводы. Исходя из этих подсчетов, можно принять окончательное решение построения схемы.

Какой ток опасней для жизни человека

Переменный ток в промышленности и быту используется значительно чаще. К этому давно привыкли и мало кто знает, что в 19 веке Никола Тесла и Томас Эдисон развернули настоящую «токовую войну», итоги которой определяли дальнейший путь развития промышленности.

Проводник электричества

Одним из аргументов, приводимых Эдисоном в защиту постоянного тока, была его меньшая опасность для человека по сравнению с переменным. При одинаковых условиях (до 500 В) сила воздействия переменного тока на организм выше в 2-4 раза.

В итоге победила концепция переменного тока. Он значительно легче и с меньшими потерями передаётся на дальние расстояния, легко преобразуется, удобнее для работы электродвигателей.

Воздействие электротока на человеческое тело:

  • Термическое (до 60%) — нагрев кожи и внутренних тканей вплоть до ожогов;
  • Электролитическое — разложение и нарушение физико-химического состава органических жидкостей (крови, лимфы);
  • Механическое — расслоение и разрыв внутренних органов под воздействием электродинамического удара;
  • Биологическое — судорожные сокращения мышечной и нервной ткани.

Внимание! Потеря сознания, а также нарушение работы сердца и лёгких происходит при совпадении частоты электрического потока и сердечных сокращений

Переменный

Электроток, который с течением времени изменяется по величине и направлению. Поток электронов постоянно колеблется с определённой частотой.

Синусоида движения электронов

Почему для жизни человека переменный ток более опасен, чем постоянный:

  • В силу своей природы вызывает возбуждение нервной системы, сокращение и расслабление мышц, что повышает вероятность фибрилляции предсердий, приводящей к остановке сердца;
  • Частота проходящего импульса снижает сопротивление человеческого тела;
  • Электропроводник с переменным током обладает высокой силой притяжения.

На заметку! Верхняя граница силы переменного тока, не приводящая к поражению и тяжким последствиям — 1,2 мА.

Постоянный

Электроток — движение заряженных частиц от минуса к плюсу, полярность и напряжение которого постоянны. Поток электронов идёт строго по прямой линии без колебаний. Тяжесть поражения прямо пропорциональна величине подведённого напряжения.

Генератор постоянного тока

Причины меньшей опасности постоянного тока по сравнению с переменным:

  • Вызывает спазм мускулатуры, но не приводит к нарушениям сердечных сокращений;
  • Сопротивление человеческого тела выше при частоте колебаний электронов равной нулю;
  • Одиночный удар позволяет быстрее прекратить прямой контакт с электропроводником, отбрасывает человека, уменьшая длительность воздействия поражающих факторов на организм.

Внимание! Верхняя граница безопасного воздействия постоянного тока значительно выше — 7 мА. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее. Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее

Сравнение воздействия на организм переменного и постоянного электротоков, чтобы выяснить, какой ток опаснее.

Сила электротока (мА) Переменный ток Постоянный ток
0,6–1,5 Лёгкое покалывание Нет ощущений
2–3 Лёгкие судороги -«-
5–7 Сильные судороги Лёгкое покалывание, небольшое ощущение тепла
8–10 Выраженные болевые ощущения, верхний порог возможности самостоятельно разжать руки Возрастают симптомы покалывания кожи и нагрева
20–25 Паралич конечностей, невозможность отпустить источник тока Слабые судороги, сильный нагрев кожных покровов
50–80 Нарушение сердечной деятельности, паралич дыхательного центра Затруднённое дыхание, сильные судорожные спазмы
90–100 Остановка дыхания, вероятность фибрилляции предсердий Паралич органов дыхания, вероятность отброса пострадавшего, получения физической травмы
200–300 При воздействии более 0,1 с остановка сердца, разрушение тканей Термическое разрушение тканей

Обратите внимание! Важно знать, какой ток опасен для жизни — 50–100 мА, более 100 мА — смертелен. Оказание помощи при электротравме

Оказание помощи при электротравме

Оказание помощи при электротравме

Об электроснабжении

Что такое электроэнергия

Среди всего разнообразия, которое предлагает энергоснабжение, это, пожалуй, самая важная часть. Под электроснабжением понимается комплекс технических средств, а также организационных мероприятий, которые обеспечивают электроэнергией потребителей на основании заключенного договора. Оно может быть внутренним и внешним. В первом случае подразумевается наличие комплекса сетей и подстанций, которые находятся на территории потребителя. Внешнее электроснабжение – это сооружения, которые обеспечивают передачу электроэнергии от места подсоединения к энергосистеме до точки использования. Без всего этого, очень часто, не доступно множество иных благ. Например, вода, тепло, освещение, доступ в Мировую сеть, а также множество прочих, уже привычных вещей.

Популярные статьи  Почему мигают светодиодные лампы при включении тепловой пушки?

Способы передачи электроэнергии

Наиболее распространены два способа передачи электроэнергии: с помощью воздушных и кабельных линий. Они отличаются между собой по дальности и среде, в которой находится проводник.

Воздушные линии – это, упрощённо, медные или алюминиевые проводники, подвешенные через изоляторы на металлические или железобетонные опоры. При таком методе возможна передача электричества на большие расстояния и между разными государствами.

Кабельная линия – прокладка проводов под землёй. Отдельные токоведущие жилы расположены, как правило, в резиновой или ПВХ изоляции. Если напряжение высокое, то имеется и броня из металлической ленты. Также она служит в качестве экрана для защиты от помех. Встречается преимущественно в пределах города или предприятия.

Что такое электроэнергияПрокладка кабелей

Дополнительная информация. Применяя кабельные линии, возможно транспортировать электроэнергию по дну водоёмов и даже морей. Это позволяет поставлять электричество на острова. Применение ЛЭП таких возможностей не подразумевает.

Основные составные части электрической сети

Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии

Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.

Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.

К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.

Рисунок 6 — Виды электрических сетей

Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.

Электрические сети делятся по:

  • напряжению;
  • степени подвижности;
  • назначению;
  • роду тока и числу проводов;
  • схеме электрических соединений:

а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.

Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)

б) замкнутые (резервированные) (Рис. 8).

Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)

Магистральные схемы электроснабжения применяются в следующих случаях:

  • а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
  • б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.

По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.

Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.

При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.

При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.

Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.

К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.

Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.

Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Видео описание

В видео показано, как работает тепловой насос:

Биогаз

Это ещё один вид альтернативных источников энергии, который сегодня стал использоваться во многих загородных домах. По сути, это газ, который образуется в результате гниения бытовых отходов. Сам процесс гниения – это переработка при помощи анаэробных бактерий. То есть тех, которым для жизнедеятельности не требуется кислород.

Следствие такой переработки несколько веществ. А именно: метан, углекислота, сероводород и другие. Смесь всех этих веществ и называют биогазом. Сразу надо оговориться, что эта разновидность топлива получается из отходов растительного и животного происхождения. Ни в коем случае не из канализационных отходов.

Биогазовые установки для переработки органики Источник uz.all.biz

Виды деятельности в электроэнергетике

Электрические компании занимаются бесперебойной доставкой электричества каждому потребителю. В энергетической сфере уровень занятости превышает этот показатель некоторых ведущих отраслей народного хозяйства государства.

Оперативно-диспетчерское управление

ОДУ играет важнейшую роль в перераспределении энергопотоков в обстановке изменяющегося уровня потребления. Диспетчерские службы направлены на то, чтобы передавать электрический ток от производителя потребителю в безаварийном режиме. В случае каких-либо аварий или сбоев в линиях электропередач ОДУ выполняют обязанности оперативного штаба по быстрому устранению этих недостатков.

Энергосбыт

В тарифах на оплату за потребление электричества включены расходы на прибыль энергокомпаний. За правильностью и своевременностью оплаты за потреблённые услуги следит служба – Энергосбыт. От неё зависит финансовое обеспечение всей энергосистемы страны. К неплательщикам применяются штрафные санкции, вплоть до отключения электроснабжения потребителя.

Энергосистема – кровеносная система единого организма государства. Производство электроэнергии является стратегической сферой безопасности существования и развития экономики страны.

Никола Тесла

Что такое электроэнергия
Никола Тесла

Резонанс в электрической цепи

Никола Тесла – выдающийся ученый, внесший огромный вклад в изучение данного явления. Тесле принадлежит более 1000 разнообразных изобретений, около 800 из которых он запатентовал.

Наиболее значительными и важными изобретениями великого ученого являются:

  • Генератор высоких частот;
  • Индукционный асинхронный электродвигатель;
  • Высокочастотный трансформатор;
  • Мачтовая антенна для передачи и приема радиосигналов.

Также Тесла первый, кто разработал и активно практиковал правила техники безопасности при работе с электрическим током различной частоты и силы.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Популярные статьи  Индуктивность проводника

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Когда появилась первая атомная электростанция?

В 1898 году известные ученые Мария Склодовская-Кюри и Пьер Кюри обнаружили, что настуран – минерал урана – радиоактивен, а в 1933 году американский физик Лео Силард впервые выдвинул идею цепной ядерной реакции – принцип, который после его осуществления на практике открыл дорогу для создания ядерного оружия. Первоначально энергия атома использовалась в военных целях. Впервые атом в мирных целях начали использовать в СССР. Первую в мире экспериментальную атомную электростанцию мощность всего 5 МВт запустили в 1954 году в городе Обнинске Калужской области. Работа первой экспериментальной АЭС показала свою перспективность и безопасность. При ее работе отсутствуют вредные выбросы в окружающую среду, в отличие от тепловых станций не требуется большого количества органического топлива. Сегодня АЭС – одни из самых экологически чистых источников энергии.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Что такое электроэнергия
Рис. 2. Механическую энергию в электрическую можно преобразовать с помощью электрофорной машины

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Что такое электроэнергия
Рис. 3. Генератор – источник тока для велосипеда

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Что такое электроэнергия
Рис. 4. Бытовой электрогенератор с бензиновым двигателем

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Заключение

Что такое электроэнергия

Как видите, энергоснабжение дома, предприятия, школы и больницы – это не так просто, как может показаться на первый взгляд. Благодаря развитию современных технологий можно быть полностью обеспеченным, даже если дом находится в сотнях километрах от ближайших более-менее крупных поселений. Например, где-то в тайге. Хотя, полностью ними все не обеспечено. Например, больницы, стационары и реанимации могут иметь резервные источники обеспечения. Но как правило, это не рассчитанные на длительное использование бензиновые и дизельные генераторы. Это хороший пример гения человечества, но не самое лучшее, на что только можно рассчитывать. Вот только для общественной инфраструктуры новые технологии пока не по карману.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: