Реактивное сопротивление

Применение

С помощью двухпроводных микрополосковых линий с боковой связью могут создаваться СВЧ антенны и ответвители, а также некоторые фильтры. Линии этого типа популярны, поскольку их изготовление дешевле, чем обычного волновода, а также они более компактны. Недостатком двухпроводных микрополосковых линий с боковой связью являются их ограничения по мощности. Другими проблемами с такими линиями передачи являются высокие потери мощности, перекрестные помехи и непреднамеренное излучение. Двухпроводные микрополосковые линии с боковой связью также находят применение в конструкциях высокоскоростных цифровых печатных плат, где обрабатываются дифференциальные сигналы.

Как правильно измерять сопротивление

При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

Активом сопротивляемости может выступать любой резистор

Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

Реактивное сопротивление
Обмотка трансформатора — один из примеров актива по превращению электроэнергии

Онлайн расчет потерь напряжения

Проблема с потерями напряжения в линии, сети или кабеле возникают обычно в следующих ситуациях:

  • при значительной длине прокладываемой линии;
  • в случае большой рассеиваемой мощности;
  • при высоких токовых нагрузках.

Если при покупке кабельной продукции допущены ошибки в выборе сечения входящих в его состав проводных жил – они при протекании больших токов начинают перегреваться. А это приводит к повышению их внутреннего сопротивления и увеличению потерь напряжения на распределенных элементах цепи.

За счет этого каждый участок кабеля определенной длины может быть представлен как резистор с некоторой удельной проводимостью (величиной, обратной сопротивлению). Так что на данном участке по закону Ома будет падать определенная часть приложенного ко всему кабелю напряжения. Это значение вычисляется по следующей формуле:

U=I*R провода

При обследовании цепей постоянного тока учитывается только активное распределенное сопротивление, обозначаемое просто R. В линиях с действующим переменным напряжением к активной составляющей добавляется реактивная часть, так что обе они составляют полный импеданс Z. Величина этих потерь обязательно учитывается при расчетах цепей переменного тока, поскольку они нередко достигают 20 процентов от всей расходуемой мощности.

Как при ручном, так и при онлайн расчете для определения распределенного сопротивления проводника используется следующая формула:

R=p*L/S

где: p – удельное сопротивление, приходящееся на единицу длины; L – общая длина измеряемого участка; S – площадь сечения.

Из формулы видно, что сопротивление, а, следовательно, и падение напряжения определяется длинной данного участка и площадью его поперечного сечения. Длинный и тонкий проводник обладает большим сопротивлением R. Чтобы его снизить – нужны толстые жилы со значительным поперечным сечением.

Производим расчет потери напряжения линии в случае с активной нагрузкой с помощью следующего выражения:

dU=I*R пров

Для того чтобы учесть комплексные потери на импедансе цепей переменного тока вводится поправка в виде коэффициента реактивности.

В реальной ситуации кабель содержит несколько проводников, каждый из которых должен учитываться при калькуляции. При пользовании онлайн калькулятором потерь напряжения в предложенные формы потребуется ввести следующие параметры:

  1. Общую длину провода.
  2. Площадь сечения каждой из жил;
  3. Значение потребляемой мощности;
  4. Общее количество проводников;
  5. Средний показатель температуры.

Также следует указать значение комплексного коэффициента COS Ф (он, как правило, выбирается из диапазона 0,94-0,98).

В результате вычислений онлайн калькулятор потерь напряжения выдаст следующие рабочие показатели:

  • Величину потерь напряжения и мощности.
  • Сопротивление участка кабеля.
  • Реактивные потери в нем.

Также в итоговой форме должно появиться значение остаточного напряжения на комплексной нагрузке.

Примечания

Нечетный импеданс (ZL,o): импеданс между одним проводником из связной пары и полигоном земли при подаче на пару проводников дифференциальных сигналов с противоположными фазами:

\

Четный импеданс (ZL,e): импеданс между одним проводником из связной пары и полигоном земли при подаче на пару проводников одинаковых сигналов с равными фазами (синфазных сигналов):

\

Дифференциальный импеданс (Zдифф): импеданс между двумя проводниками связной пары при подаче на на них дифференциальных сигналов (с противоположными фазами):

\

Синфазный импеданс (Zсинф): импеданс между двумя проводниками связной пары при подаче на на них синфазных сигналов (с одинаковыми фазами):

\

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.
Популярные статьи  Механические характеристики электроприводов

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

О реальном конденсаторе

Реальный конденсатор имеет одновременно два сопротивления: активное и емкостное. Их следует считать включенными последовательно.

Реактивное сопротивление

Напряжение приложенное генератором к активному сопротивлению и ток идущий по активному сопротивлению совпадают по фазе.

Советуем изучить Плотность энергии магнитного поля

Напряжение приложенное генератором к емкостному сопротивлению и ток идущий по емкостному сопротивлению сдвинуты по фазе на 90 . Результирующее напряжение приложенное генератором к конденсатору можно определить по правилу параллелограмма.

Реактивное сопротивление

На активном сопротивлении напряжение Uакт и ток I совпадают по фазе. На емкостном сопротивлении напряжение Uc отстает от тока I на 90 . Результирующее напряжение приложенное генератором к конденсатору определяется по правилу параллелограмма. Это результирующее напряжение отстает от тока I на какой то угол φ всегда меньший 90 .

Виды пассивных элементов

Эквивалентное сопротивление

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Реактивное сопротивление
Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Реактивное сопротивление
Подсоединение конденсатора в электроцепь

Как правильно измерять сопротивление

При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

Реактивное сопротивление

Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

Реактивное сопротивление

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от катушки индуктивности и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

А также цифровой осциллограф:

С помощью него мы будем смотреть напряжение и силу тока .

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит – напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток?

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений

Популярные статьи  Позиционные регуляторы и двухпозицонное регулирование

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.Величина и начальная фаза переменного тока, создаваемого переменным напряжением, зависят не только от величины сопротивлений, образующих электрическую цепь, но и от индуктивности и емкости этой цепи.Активное сопротивление в цепи переменного тока.Строго говоря, любая электрическая цепь обладает, кроме сопротивления, также индуктивностью и емкостью. Если по проводнику проходит ток, то вокруг него возбуждается магнитное поле, т.

е. имеют место явления индуктивности. Ток возникает под действием электрического поля на заряды, следовательно, проводник должен обладать емкостью, так как в диэлектрической среде вокруг него возникает поток смещения.Однако в ряде случаев относительная роль двух из трех параметров  R, L, С в электрической цепи практически незначительна.

Это позволяет рассматривать подобную цепь как обладающую только сопротивлением, или только индуктивностью, или только емкостью.Мы рассмотрим поочередно условия в трех таких простейших цепях переменного тока.В цепи, содержащей только сопротивление г, синусоидальное напряжени u = Um sin ?t источника электроэнергии создает ток:i = u : r = (Um: r ) sin ?tТак как сопротивление r от времени не зависит, то в этой цепи ток совпадает по фазе с напряжением (рис. 1) и изменяется также синусоидально:i = Imsin ?tздесь:Im= Um: rРисунок 1 Кривые мгновенных значений напряжения и тока в цепи,содержащей только сопротивление r.Разделив последнее выражение на , получим формулу закона Омадля действующих значений напряжения и тока:I = U : rКак видно из формулы, этот закон для цепей переменного тока, содержащих только сопротивление r, имеет такой же вид, как и закон Ома для цепи постоянного тока.В цепи переменного тока сопротивление r называется активным сопротивлением. Это сопротивление, в котором электроэнергия преобразуется в другую форму (в теплоту и др.).Оно может существенно отличаться от сопротивления rпри постоянном токе.

Сопротивление для постоянного тока называют омическим, чтобы отличить его от активного сопротивления для переменного тока.Различие между активным и омическим сопротивлениями обуславливается рядом причин. Одна из них – поверхностный эффект, частичное вытеснение переменного тока в поверхностные слои проводника.Чем больше частота переменного тока, тем это вытеснение значительнее. Из-за поверхностного эффекта сопротивлениеrоказывается уже существенно большим, чем вычисленное по формуле:r = ?

(l : S)Поверхностный эффект создается тем, что переменное магнитное поле индуктирует во внешних слоях проводника меньшую ЭДС самоиндукции, чем во внутренней его части.Особенно сильно поверхностный эффект увеличивает активное сопротивление стальных проводов. На активное сопротивление медных и алюминиевых проводов при промышленной частоте поверхностный эффект существенно влияет только при больших сечениях проводов (свыше 25 кв. мм).Кроме поверхностного эффекта, большое увеличение активного сопротивления электрической цепи могут вызывать потери энергии в переменном электромагнитном поле цепи от гистерезиса и вихревых токов.Поделитесь полезной статьей:

https://youtube.com/watch?v=NSxgxMNG2fwrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

Формула сопротивления

Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.

Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.

Реактивное сопротивление

Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.

Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.

Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:

  • олово — 9,9 * 10-8 Ом * мм2/м;
  • медь — 0,01724 Ом * мм2/м;
  • алюминий — 0,0262 Ом * мм 2/м;
  • железо — 0,098 * Ом * мм2/м;
  • золото — 0,023 Ом * мм2/м.

Реактивное сопротивление

Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.

Емкостная проводимость

Одним из эксплуатационных показателей остается данный параметр, обозначающий емкость между проводниками и землей, а также аналогичный показатель между самими токопроводниками.

Для его определения в трехфазной линии воздушных передач применяется выражение:

Можно увидеть прямую зависимость рабочей емкости от уменьшения расстояния между кабелями и их сечения. Следовательно, для линий низкого напряжения данная величина всегда будет больше, чем для высокого.

Проводимость подобного вида в воздушных линиях одноцепной конструкции рассчитывается так:Токи емкостного происхождения существенно влияют на работу линий с рабочими характеристиками напряжения лот 110 кВ и более, а также в магистралях уложенными кабелями с идентичными параметрами выше 10 кВ.

Попытка применить именно подобный способ для самостоятельного выполнения будет весьма непростой задачей, ведь в нем применяются и различные конструктивные нюансы типа геометрических характеристик, и диэлектрическая проницаемость изоляционного слоя, и многие другие вводные. Следовательно, оптимальным решением будет информация из таблиц, составленных производителями для конкретной марки кабеля. В каталогах все данные приведены с учетом номинального напряжения для каждой модификации.

Популярные статьи  Ограничения токов короткого замыкания в электрических сетях промышленных предприятий

Для начала линии, когда мы имеем дело с холостым ходом, емкостный ток определяется так:

Данный показатель будет объективным только при полностью обесточенных приемниках электричества.

Большое значение обозначенная емкость в любой рассматриваемой конструкции имеет для точного выполнения предварительных расчетов для устройств компонентов защиты и элементов заземления.

Для воздушной линии действительна такая формула:

Для кабельных магистралей:

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.

Какое сопротивление называется реактивным, какое активным

Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.

Реактивное сопротивление
Типы рассматриваемой величины и формулы ее расчета

Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.

Реактивное сопротивление
Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сети

Что такое сопротивление?

В электротехнике под сопротивлением подразумевают свойство материального тела оказывать препятствие прохождению электрического тока

Важное пояснение: обычно здесь всегда вместо «материального тела» указывают «проводника», что вносит путаницу и неразбериху, так как слово «проводник» имеет двоякий смысл:

  • с одной стороны – это то, что в данном случае проводит электрический ток;
  • с другой стороны – существуют проводники, полупроводники, диэлектрики, как раз и обладающие различным электрическим сопротивлением.

Отсюда и второе определение сопротивления – физическая величина, обратная проводимости, вопросам изучения которой посвятил свою научную деятельность выдающийся немецкий учёный Георг Симон Ом. Испытывая разнообразные проводники в собранной схеме, он убедился в их различной проводимости. Это и послужило отправной точкой к появлению такого понятия, как электрическое сопротивление.

Хотя справедливости ради надо сказать, что сам термин «сопротивление» ввёл ещё раньше русский электротехник Василий Владимирович Петров – физик-экспериментатор. Тем не менее честь открытия эмпирического закона Ома принадлежит физику из Германии, именем которого также названа и единица электрического сопротивления – 1 Ом.

Реактивное сопротивление

Закон Ома для полной цепи выглядит следующим образом:

I = E/(R+r)

Здесь:

  • E – ЭДС источника напряжения, В;
  • I – сила тока в цепи, А;
  • R – сумма сопротивлений всех внешних элементов цепи, Ом;
  • r – сопротивление (внутреннее) источника напряжения, Ом.

Или по-другому:

E = Ir + IR

Что означает равенство суммы падений напряжений на внешней цепи и внутреннем сопротивлении источника ЭДС источника.

Исходя из закона Ома в определённых пределах сопротивление, являющееся постоянным и обозначаемое буквами R или r, можно рассчитать по формуле:

R = U/I

где U – напряжение (разность электрических потенциалов) на концах проводника, В; I – сила тока, протекающего из одного конца проводника в другой, А.

Что касается переменных величин сопротивления, фигурирующего в цепях переменного тока или в изменяющихся электромагнитных полях, то здесь оперируют понятиями импеданса (комплексного сопротивления) и волнового сопротивления. Полное сопротивление цепи переменного тока, включающее в себя активную и реактивную (индуктивную и ёмкостную) составляющие, рассчитывается по формуле:

Z = √(R^2+X^2)

Здесь: Z – полное сопротивление, R – активное сопротивление цепи переменного тока. X = XC + XL, – сумма реактивного ёмкостного и индуктивного сопротивлений, проявляющих себя в цепях переменного тока.

Ещё одним понятием (названием технического изделия, употребляемого в электронике и электротехнике) сопротивления выступают резисторы, несущие на себе активную нагрузку.

Реактивное сопротивление

В чем измеряется реактивное сопротивление

Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2

Реактивное сопротивление
Примером активной сопротивляемости — линия электропередач

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: