Технические требования к светодиодным светильникам
В этом разделе перечислены основные технические требования и рекомендуемые документы для светодиодного освещения.
Ключевые параметры светильников, определяющие качество освещения:
Световой поток (лм): количество света, излучаемого светильником;
Мощность лампы (Вт): количество электроэнергии, потребляемой светильником, обеспечение светового потока;
Световая эффективность светодиодов (Лм/Вт). Световая эффективность определяет эффективность светодиодов. Этот параметр измеряет количество света, излучаемого источником на единицу мощности, и выражается в люменах на ватт;
Световая эффективность светильника (Лм/Вт). Светодиодный светильник состоит из драйвера, радиатора и оптики. Каждый их этих компонентов может уменьшить изначальную световую эффективность светодиодов
Принимая во внимание тот факт, что поверхность дороги освещается светильником, лучше всего использовать показатель эффективности светильника, а не светодиодов;
Ватт на квадратный метр (Вт/м2): количество энергии, необходимое каждому осветительному прибору для освещения дорожной поверхности до заданного уровня освещенности. Это наиболее эффективный способ измерения эффективности источника света при освещении дорог, несмотря на то, что световая эффективность и световой поток чаще всего считаются наиболее подходящими параметрами для измерений;
Срок службы (часов)
Срок службы светодиодов измеряется иначе, чем срок службы традиционных ламп, который завершается после того, как лампа перестает излучать свет полностью. Светодиоды, как правило, не перестают излучать свет полностью, однако изнашиваются или тускнеют по истечении определенного периода времени, когда излучаемый ими световой поток оказывается не соответствующим заданным уровням освещенности. Срок службы светодиодов завершается тогда, когда излучаемый ими световой поток составляет 70% оригинального значения.
Индекс цветопередачи. Индекс, используемый для измерения способности искусственного света воспроизводить цвета объекта, по сравнению с естественным источником света (солнце), индекс цветопередачи которого составляет 100. Чем выше значение индекса цветопередачи, тем лучше видимость.
Вт/м2 и стоимость потребления электрической энергии. Светодиоды излучают направленный свет, что делает их исключительно эффективными при освещении определенных поверхностей, таких как дороги, и позволяет снижать значение Вт/м2. Для сравнения, традиционные лампы рассеивают свет во всех направлениях, в том числе и туда, где он не нужен, поэтому светодиодные лампы потребляют намного меньше электроэнергии для обеспечения одинакового уровня освещенности на дороге. Это хорошо заметно при сравнении годовой стоимости потребления электрической энергии, которая у светодиодных ламп будет намного ниже.
Срок службы. Светодиоды имеют длительный срок службы, несмотря на то, что для их установки требуется изначальное большое капиталовложение, светодиоды, в большинстве случаев, представляют собой наиболее экономичный вариант освещения в долгосрочной перспективе. Это связано с экономией затрат в течение всего срока эксплуатации светодиодов, включая ремонт, замену и стоимость утилизации.
Опасные вещества. Светодиодные системы более безопасны для окружающей среды за счет того, что они не содержат опасных веществ (например, ртути), в соответствии с международными нормативами. Кроме этого, светодиоды также реже утилизируют благодаря более длительному сроку эксплуатации.
Внедрение проекта уличного освещения
Руководителю проекта в первую очередь необходимо рассмотреть тип проекта светодиодного освещения, который необходимо будет выполнить. К таким проектам относят «проект модернизации уличного освещения», когда существующие неэффективные светильники подлежат замене на энергосберегающие светодиодные светильники, или «проект по строительству системы светодиодного освещения с нуля», предусматривающий установку освещения в районах, где оно ранее не было предусмотрено.
В случаях, когда речь идет о проекте модернизации существующих светильников, основная цель проекта уличного освещения – экономия энергии и повышение уровня освещенности. При рассмотрении проектов, предусматривающих установку светодиодного уличного освещения с нуля, дополнительные функции светодиодных светильников обеспечивают больше возможностей. Кроме того, отсутствие существующей системы дает большую свободу действий при выборе наиболее экономичного и перспективного решения для освещения.
- Определение цели проекта
Как уже отмечалось, главной целью уличного освещения является обеспечение соответствующего уровня освещенности на дорогах для безопасности водителей и пешеходов
Важно подчеркнуть, что установка светодиодных светильников также способствует достижению других целей, таких как снижение расходов на электрическую энергию, улучшение уровней освещения и освещение дорог в не электрифицированных районах. Руководитель проекта должен выбрать наиболее важную цель и обеспечить оптимальное соотношение других целей проекта, так как его основная цель окажет непосредственное влияние на выбор светового решения
Например, если ключевой целью проекта модернизации уличного освещения является быстрая окупаемость, рекомендуется устанавливать светодиодные светильники без опций диммирования и управления. Если же основная цель заключается в максимальной экономии энергии, уменьшении расходов на обслуживание, рекомендуется устанавливать светильники, оснащенные функциями управления и диммирования.
- Экономическая целесообразность и возможности финансирования
При рассмотрении проектов модернизации уличного освещения или строительства уличного освещения с нуля необходимо в первую очередь учитывать экономическую целесообразность и возможности финансирования подобных проектов. Несмотря на то, что расходы за период срока службы светодиодных светильников, как правило, оказываются ниже, по сравнению с традиционными технологиями, необходимость в больших капитальных вложениях на начальном этапе чаще всего становится непреодолимым барьером на пути реализации проектов. Одним из главных инструментов финансирования для решения этой проблемы, который позволяет избегать капиталовложений на начальном этапе, является механизм государственно-частного партнерства.
- Создание проекта
Разработка проектов внедрения светодиодного уличного освещения делится на два этапа. Первый этап включает в себя аудит уличного освещения: детальную оценку существующей системы освещения и исходного положения, особенно объем потребления электроэнергии и определение основных недостатков и областей для усовершенствования.
Факторы, влияющие на подготовку проектов по созданию системы светодиодного освещения с нуля и проектов модернизации уличного освещения, как правило, разные. В связи с этим, первый этап каждого из этих проектов будет рассмотрен по отдельности.
Структура уличного SMART-освещения
Уличное SMART-освещение структурно основывается на следующих компонентах и принципах:
- Светодиодный светильник представляет собой электрический прибор, который обеспечивает яркое и экономичное освещение.
- Модуль управления – устройство, которое используется для управления светильником, измерения параметров светильника и передачи данных по различным каналам связи на следующий иерархический уровень. Управление светильником осуществляется через интерфейсы связи DALI, 1-10В, ШИМ. Передача данных может осуществляться через каналы связи PLC, GSM\GPRS, LoRaWAN, NB IOT.
- Контроллер предназначен для управления наружным освещением через управление электромагнитными пускателями по заданному расписанию. Контроллер может иметь цифровые и аналоговые входы для диагностики напряжения по каждой фазе (A, B, C) в цепях после пускателей, встроенный модем связи с верхним уровнем, интерфейс RS-485, CAN-BUS, Ethernet. Связь с модулем управления осуществляется по различным каналам. Распространенный канал связи – PLC.
Контроллер может идентифицировать электрические неисправности и считывать электрические параметры с электросчетчиков. Это устройство также может указываться как контроллер наружного освещения или контроллер шкафа.
Система центрального управления – система, взаимодействующая с контроллерами, модулями управления с помощью различных каналов связи для обеспечения удаленной настройки, мониторинга, диагностики и управления уличным освещением. Предназначена для удаленного централизованного круглосуточного управления оборудованием наружного освещения и сбора диагностической информации о текущем режиме работы и состоянии наружного освещения.
Критерии оценки проекта
Качество проектирования уличного освещения
Качественное и высококвалифицированное проектирование уличного освещения на начальном этапе реализации проекта — залог успеха по завершении. На этапе проектирования учитываются все нюансы, определяются характеристики улиц, спецификация материалов, источников света, определяется месторасположение опор и светильников, поэтому проектирование уличного освещения напрямую влияет на уровень безопасности населения в темное время суток, а также на качество жизни населения в целом. Проект освещения – это руководство по организации освещения. Проект создается командой инженеров-светотехников и представляет собой набор чертежей и документов, называемых рабочим проектом. В зависимости от объекта и желаемого результата рабочий проект может отличаться, но обычно состоит из таких частей:
- Техническое задание
- Ведомость объема работ
- Расположение оборудования
- Расчет освещения
- Чертежи электротехнической части
- Чертежи системы управления
- Комплектация щитов управления и электропитания
- Спецификация оборудования и материалов
- Оценка воздействия на окружающую среду
Проект уличного освещения состоит из следующих этапов:
- Обследование объекта и анализ полученных данных.
- Топографическая съемка местности.
- Подбор осветительного оборудования, системы управления, соответственно поставленным задачам и особенностям объекта, требованиям заказчика к эстетике и бюджету освещения.
- Светотехнический расчет наружного освещения (расстановка светильников на плане и расчет требуемой освещенности).
- Согласование и утверждение проекта с заказчиком, государственными органами.
- Реализация проекта освещения.
До вступления к проектированию необходимо в обязательном порядке составить техническое задание. Оно необходимо, чтобы заказчик и исполнитель синхронно и одинаково понимали задачу, чтобы не было разногласий, когда заказчик имел в виду одно, исполнители это поняли по-своему и сделали не то, чего от них ожидали.
Для выполнения светотехнических расчетов применяется чаще всего программа Dialux (программа для расчета и проектирования освещения) от немецкой компании DialGmbH. С ее помощью рассчитывают уровень освещенности, а потом сверяют результаты с ГОСТом и СНиПами. Если что-то не сходится или освещение получается неравномерным, корректируют расстановку светильников. Еще одним важным моментом являются электрические расчеты. В данном разделе рассчитывают нагрузку, которую получат сети освещения от линии питания, сечение кабеля, состав щитов электропитания и предусматривают защиту от удара током, от молнии, от перенапряжений. Это один из самых важных этапов, так как от того, как он выполнен, зависят жизнь и здоровье людей. При подборе оборудования для интеллектуального управления необходимо найти компромисс «цена – качество». Главное – не экономить на качестве, от этого снижается безопасность. Лучше выбрать проверенное временем оборудование.
После того как все технические параметры проекта освещения определены, оборудование подобрано и согласовано с заказчиком, приходит время формирования спецификации планируемых к закупке материалов и оборудования.
Методы управления уличным освещением
Существует три метода управления освещением. Расскажем о них подробнее.
Ручное управление
Включение фонарей производится вручную, каждый фонарь или их группа контролируется оператором на месте.
По сути это самый старый способ. Когда фонарщик проходил по улице и зажигал каждый масляный или газовый фонарь, а потом гасил их — это и была первая и очевидная реализация метода. Во дворе своего дома освещением мы тоже управляем чаще ручным способом (про автоматизацию ниже).
Фонарщик реализует ручное управление газовой лампой (кстати, снимок современный на нем сотрудник Брестского ГорСвета)
На сегодня в коммунальном хозяйстве ручное управление используют только в экстренных ситуациях, или при выполнении ремонтных работ.
Дистанционное управление
Одно из первых устройств дистанционного управления уличным освещением
Когда все электроснабжение в населенном пункте или его части осуществлялось от отдельной электростанции, функции фонарщика перешли к их персоналу. Ответственное лицо, определив, что на улице достаточно стемнело или рассвело, включало или выключало рубильник, подающий напряжение на сети уличного освещения.
Автоматическое управление
Щит простейшей автоматики уличного освещения
Трансформаторная подстанция
В этом случае, отдельные участки уличного освещения, в зависимости от состояния датчиков и заложенного алгоритма, включаются и выключаются сами. Переход на автоматическую систему связан с тем, что напряжение потребителям стали подавать с помощью локальных трансформаторных подстанций преобразующих высоковольтное напряжение в стандартное.
Это создало два фактора предопределивших переход на автоматику:
- Устанавливать (кроме некоторых случаев) отдельные подстанции только для уличного освещения нерентабельно. Трансформаторы сейчас преобразуют напряжение для всех энергопотребителей на территории.
- Кроме того, для централизованного управления включением и выключением уличных фонарей, пришлось бы тянуть к каждой отдельной подстанции питающей освещение отдельную линию, что еще более бы увеличило затраты.
Поэтому в 50-е — 60-е годы была внедрена система автоматического управления освещением. Она работала по простейшему доступному на то время принципу. На каждой подстанции устанавливалась автоматика, действующая от датчиков освещенности. Стало темно — подали напряжение на фонари, стало светло — отключили.
Однако датчики подводили в некоторых случаях:
- при неправильной калибровке они срабатывали нечетко;
- из-за засветки фарами или даже полной луной фонари могли погаснуть ночью;
- при закрытии датчика снегом, льдом, грязью или пылью свет включался днем;
- в конце концов, датчик мог выйти из строя.
Раритетный датчик освещенности
Потом нашли еще один существенный минус, который проявился во времена, когда стали задумываться об экономии — зачем в ночные часы, если движения людей и транспорта нет, напрасно жечь электроэнергию. Поэтому датчики освещенности стали блокировать с реле времени. Таймер выключал или все фонари полностью или часть их во дворах и малонаселенных улицах в промежуток, например с часу до четырех ночи.
Позже появились еще и так называемые астрономические реле (на фото ниже). В них программное обеспечение по введенным координатам рассчитывает время заката и рассвета в данном месте, и на основе расчета подает сигналы на переключение. В реле также реализуется и функция выключения и включения в заданные часы.
Астрономическое реле
Датчики освещенности остались только для контроля непредвиденного уменьшения естественной освещенности, например из-за тумана. Кажется система на основе астрономического таймера идеальный вариант (на их основе работает большинство систем уличного освещения в небольших населенных пунктах).
Но у нее все равно есть минусы:
- Для того чтобы перепрограммировать систему на другое время срабатывания (например на время праздников) необходимо объехать обойти все подстанции. Это отнимает много времени (знаю по своему опыту).
- Присутствие человека требуется и для определения неисправностей, снятия показаний с приборов учета расхода электроэнергии.
Поэтому на сегодня все больше используют автоматизированные системы управления на основе современных цифровых технологий. В них комбинируется автоматическое и ручное управление. Рассмотрим реализацию одной из типичных систем.
Автоматическая система управления
Структурная схема одного из вариантов автоматизации управления уличным освещением
Аппаратно она состоит из двух уровней:
Верхний — панель диспетчерского управления уличным освещением, находится на предприятии, в ответственности которого находятся осветительные сети (Горсвет или коммунальщики). Контролируется дежурным или диспетчером. На него стекается вся информация с нижнего уровня, и осуществляется изменение параметров или программ его работы.
Диспетчерский центр управления уличным освещением
Нижний — щит управления уличным освещением находятся на участках сетей освещения. Щиты коммутируют работу осветительных приборов и контролируют их состояние без присутствия работников.
Щит управления освещением системы АСУНО
Связь между верхним и нижним уровнями может осуществляться несколькими способами. Как правило, оборудование, поставляемое производителями поддерживает все функции. Поэтому предприятие выбирает вариант, наиболее выгодный для конкретной ситуации. Иногда в системе одновременно используют несколько каналов.
Поэтому перечислим все способы коммутации:
- Модемный канал — через линии обычной телефонной сети. Один наиболее дешевых способов. Недостатки только в том, что не всегда телефонная сеть находится рядом, а прокладка отдельной линии может быть затратной. Также за телефонную связь нужно вносить хоть небольшую, но все-таки плату.
- GSM канал — с помощью сотовой сети. Оборудование недорого, подключиться можно быстро и практически в любом месте. Недостаток — значительная оплата за пользование сетью.
- LAN линии — блок управления уличным освещением и аппаратура диспетчера соединяются витой парой. Этот канал не требует оплаты за связь сторонним организациям, но требует прокладки линий к каждому шкафу. Выгодно только при небольшой отдаленности оборудования верхнего и нижнего уровня.
- Радиоканал — как и понятно с помощью радиосвязи. Оборудование дороже, чем в других случаях, зато не требуется оплата за канал. Минус один — плохая помехозащищенность.
Возможности автоматической системы управления
Перечислим основные возможности системы, причем обратите внимание — все операции и передача данных осуществляется в режиме реального времени и с возможностью работать не с каждым щитом управления отдельно а и группировать их. Функции управления:
Функции управления:
- включение и выключение каждого источника освещения по команде;
- программирование включения осветительных по времени или от состояния датчиков (освещенности и других), возможно введение почасового, календарного и сезонного графика работы;
- переключение фаз на линиях питания осветительных приборов, в том числе и программно — по времени, или в зависимости от параметров питания на вводе в шкаф;
- принудительная перезагрузка микропроцессорной системы шкафа управления.
Функции контроля:
- контроль состояния линий подключения освещения (есть или нет напряжение его параметры, ток, наличие короткого замыкания, перекос фаз, косинус фи);
- контроль состояния линий ввода (есть или нет напряжение его параметры, ток, перекос фаз, косинус фи);
- контроль состояния контакторов и автоматических выключателей на выходах (включен/выключен);
- контроль прибора учета расхода электроэнергии (показания, пики, тарифы);
- контроль несанкционированного доступа в шкаф (при открытии без разрешения, или взломе отправляется информация диспетчеру);
- состояние линий связи (уровень сигнала и т. п.);
- диагностика неисправностей системы;
- контроль возгораний, датчики сигнализируют о резком повышении температуры.
Система управления уличным освещением почти всегда имеет встроенный источник питания. При отключении электроснабжения, она в течении не менее чем часа остается на связи, и сообщает об изменениях параметров.
Также стоит отметить, что почти всегда дублируется сохранение данных. Информация о ситуации записывается и хранится не только у диспетчерской аппаратуры, но и в оборудовании шкафов (щитов управления на местах). Если отсутствовала связь, то можно восстановить ход событий считать через память щита управления (как говорилось выше, он энергонезависим).
ZABBIX
В ходе работ появились некоторые планы на ближайшее будущее, а именно настройка мониторинга работы оборудования. Возможности такого мониторинга сильно зависят от степени готовности самих инженерных систем. Например, мы можем следить за положением силового контактора и контролировать включение освещения. Или получать значение силы тока и тем самым определять, сколько ламп вышло из строя и т.д. К сожалению, на текущий момент к полноценному мониторингу модернизируемая система не готова. Тем не менее, для задела на будущее было решено использовать уже существующую на предприятии систему мониторинга — ZABBIX.
Все принципы работы остаются неизменными. Мы лишь перенесем всю описанную выше логику управления в ZABBIX.
Шаблон для ZABBIX
Создадим шаблон astro_outdoor_lighting для Zabbix со следующими макросами:
-
{$CIVIL_DEGREES} — Окончание и начало гражданских сумерек в градусах. Включение и отключение наружного освещения,
-
{$ELEV} — Высота над уровнем моря в метрах,
-
{$LAT} — Широта в градусах,
-
{$LON} — Долгота в градусах.
Элементы данных
Шаблон содержит только один элемент данных — elevation. Этот элемент следит за положением солнца в заданном географическом положении.
Чтобы получать текущее положение Солнца, элемент осуществляет внешнюю проверку через ранее созданный скрипт get_sun_elevation.pl.
Подробности настройки внешних проверок в ZABBIX смотрите в документации.
Триггеры
Единственный триггер civil_twilight_dawn срабатывает по окончании гражданских сумерек, т. е. в момент, когда возникает необходимость в работе наружного освещения.
Шаблон созданного макроса доступен на github.
Добавляем узел сети
После того как шаблон создан, нам необходимо создать узел сети для каждого географического положения, в котором находятся управляемые нами установки наружного освещения. Настройка узла сети заключается в задании актуальных координат и высоты Солнца.
Скрипты и действия ZABBIX
В разделе -> создадим глобальные скрипты с говорящими названиями facade light off и facade light on.
Когда триггер civil_twilight_dawn переходит в состояние «Проблема», нам необходимо включить наружное освещение, т.е. выполнить скрипт facade light on. После восстановления триггера освещение необходимо отключить, для чего потребуется вызвать скрипт facade light off. Поэтому в разделе -> мы создадим действие facade light, реализующее необходимое нам поведение системы.
Подобным же образом добавляем скрипты и действия для каждого узла сети.
На этом настройку ZABBIX сервера для управления установками наружного освещения можно считать завершенной.
Применение «умного освещения»
Оборудование «умного освещения» предназначено для управления внутренними и наружными осветительными приборами. Сюда подключаются каждая лампа в доме, садовые фонари, точечные светильники и различные подсветки. Также централизованное устройство регулирует работу всех приборов.
Для подключения к сети используются контроллеры, а датчики и детекторы используются для регистрации действий. К примеру, датчик регистрирует любые изменения освещения — наступление вечера и ночи, и в зависимости от того, насколько за окном темно, включает светильники с определенным уровнем яркости. Последнюю операцию выполняет не сам датчик, а контроллер. Датчик отправляет на него сигнал, контроллер его обрабатывает и принимает решение, что и где включать.
Аудит проектов уличного освещения
Проект по модернизации уличного освещения: некоторые вопросы, рассматриваемые при проведении аудита, включают:
- Определение категории дороги, согласно нормативным документам текущего и прогнозируемого движения автомобильного транспорта и пешеходного потока. Соответствует ли имеющаяся система освещения потребностям в освещении? Указать требуемый уровень освещения.
- Схема движения – улица двусторонняя или односторонняя; дорога занята в определенные часы или дорога занята всю ночь (например, дорога в аэропорт)?
- Обеспечивают ли установленные опоры освещения необходимый уровень освещения на всей дороге? Соответствуют ли они требованиям по высоте и расстоянию установки?
- Подходят ли существующие опоры для установки предлагаемого светодиодного светильника, необходима ли замена кронштейнов, есть ли необходимость изменения расположений опор?
- Какое состояние кабелей и проводки между осветительными опорами и внутри них?
- Часы горения освещения в летнее и зимнее время.
- Изношенность сетей, необходима ли ее полная замена?
- Укажите текущую стоимость электроэнергии для уличного освещения – в киловатт-часах и тенге.
- Как происходит обслуживание, ежегодно на тендерной основе?
- Как относятся люди к существующей системе освещения?
- Наличия зоны покрытия мобильной связи.
- Температурный диапазон в зимнее и летнее время.
Проект по созданию системы светодиодного освещения с нуля. Светодиодные решения для уличного освещения обладают рядом дополнительных преимуществ, включая улучшение уровней освещения, по сравнению с традиционными светильниками. Эти дополнительные параметры следует учитывать при разработке проекта по созданию сетей светодиодного освещения с нуля. При разработке такого проекта чаще всего возникают следующие вопросы:
- Оптимальный уровень освещения улиц с учетом ее категории, потребностей пешеходов, а также с учетом текущего и прогнозируемого движения автомобильного транспорта и пешеходного потока.
- Схема движения на данной дороге – дорога всегда свободна, дорога загружена в определенные часы или дорога занята всю ночь (например, дорога в аэропорт)?
- Что находится на этой улице (жилые дома, многоэтажные дома и т. д.)?
- Наличие деревьев, линии связи, труб водо-, газо- и теплоснабжения, имеются ли пешеходные переходы?
- Точки подключения к сетям электропитания, мощность существующих трансформаторных подстанций.
- Наличие зоны покрытия мобильной связи.
- Температурный диапазон в зимнее и летнее время.
На втором этапе предусмотрена разработка оптимального решения по установке наружного освещения, соответствующего проектным и бюджетным требованиям, с учетом результатов проведенного аудита, а также нормативных документов, регулирующих уличное освещение.