Магнитная дефектоскопия

Магнитопорошковый метод контроля (магнитопорошковая дефектоскопия)

Как
следует из названия, магнитопорошковая дефектоскопия проводится с помощью магнитного
порошка. Существуют два метода магнитопорошкового контроля: сухой и мокрый.

В случае сухой магнитопорошковой дефектоскопии на поверхность сварного соединения
наносится сухой магнитный порошок (железные опилки, окалина и др.). В случае
мокрой магнитопорошковой дефектоскопии магнитный материал наносится в виде суспензий
магнитного порошка с керосином, маслом, мыльным раствором.

Под действием электромагнитных полей рассеяния, частицы порошка равномерно
перемещаются по поверхности сварного соединения. Над сварными дефектами магнитный
порошок скапливается в виде валиков. По форме и размерам этих валиков можно
судить о форме и размерах найденного дефекта.

Технология магнитопорошкового контроля

Метод магнитопорошковой дефектоскопии включает в себя следующие технологические
операции:

1. Подготовка поверхности сварного соединения к проверке. Поверхности необходимо
очистить от загрязнений, окалины, сварочных брызг, наплывов и шлака после сварки.
2. Подготовка суспензии, заключающаяся в динамичном перемешивании магнитного
порошка с транспортируемой жидкостью
3. Намагничивание контролируемого изделия
4. Нанесение суспензии или магнитного порошка на контролируемую поверхность
5. Осмотр контролируемой поверхности сварного соединения и определение участков,
на которых присутствуют отложения порошка
6. Размагничивание сварного соединения.

Эффективность магнитопорошковой дефектоскопии

Метод магнитопорошковой дефектоскопии обладает хорошей чувствительностью к
тонким и мельчайшим сварным трещинам. Он прост в исполнении, даёт наглядные
результаты, и не растянут по времени.

Чувствительность магнитопорошкового метода может различаться в каждом отдельном
случае. Зависит это от следующих причин:

1. Величины частиц порошка и от метода его нанесения
2. Напряжения магнитного поля, воздействующего на сварное соединение
3. Рода применяемого тока (переменный или постоянный)
4. От формы и величины дефекта, от глубины его расположения, а также от того,
как дефект ориентирован в пространстве.
5. От способа и направления намагничивания соединения
6. От качества и формы контролируемой поверхности

С помощью магнитных методов контроля лучше всего обнаруживаются плоскостные
дефекты: сварочные
трещины, несплавления и непровары, если наибольший их габарит ориентирован
под прямым углом (или близким к прямому) относительно направления магнитного
потока.

Дефекты округлой формы (поры, раковины, неметаллические включения) могут не
создать достаточного рассеянного потока и при контроле обнаруживаются хуже всего.

Дефектоскопы для магнитопорошкового контроля

В состав дефектоскопов для такого метода контроля входят источники тока, устройства
для подведения тока к контролируемой поверхности, приборы для намагничивания
поверхности (соленоиды, электромагниты), устройства для нанесения магнитного
порошка или суспензии на проверяемую поверхность, измерители величины тока (или
напряжённости магнитного поля).

Магнитопорошковые дефектоскопы подразделяются на стационарные, передвижные
и переносные. Стационарные дефектоскопы нашли широкое применение на заводах
и других предприятиях с крупносерийным выпуском различной продукции. Среди них
такие модели, как УМДЭ-2500, ХМД-10П, МД-5. Такое оборудование позволяет контролировать
качество сварных соединений различной формы. Они способны обеспечить высокую
производительность контроля — от нескольких десятков, до нескольких сотен изделий
в час.

Распространённые, серийно выпускаемые модели переносных и передвижных дефектоскопов
— это ПМД-70 и МД-50П. Переносной дефектоскоп для магнитного контроля ПМД-70
широко используется для контроля сварных соединений в полевых условиях. А передвижной
дефектоскоп модели МД-50П чаще всего используется для контроля массивных крупногабаритных
сварных соединений по участкам.

Видео: магнитопорошковая дефектоскопия с применением люминисцентных
концентратов

Суть и особенности магнитной дефектоскопии

У сварных деталей ферромагнитного состава существуют внутренние молекулярные токи – электроны вращаются вокруг своей оси. Они хаотично направлены, без поля, создаваемого магнитами, взаимно компенсируются. Когда к поверхности подносят магнит, внутренние поля подстраиваются под внешние. Методы магнитной дефектоскопии регистрируют возмущения магнитного потока, они возникают в местах препятствий – пустот, на инородных включениях.

Силовые линии будут огибать зону брака в сварном шве. Меняется плотность поля.

Понятно, что несплошности, по направлению совпадающие с потоком силовых линий, выявить дефектоскопом сложно, поэтому контроль делается в нескольких направлениях, чтобы дефекты располагались перпендикулярно или под наклоном. Чем больше внутреннее препятствие, тем сильнее возмущение поля. У дефектов проницаемость в сотни раз ниже.

Принцип методов магнитной дефектоскопии заключается в намагничивании готовых соединений, глубинные изъяны в шве вытесняют силовые импульсы, создается локальное полевое рассеяние. Это изменение улавливает чувствительный дефектоскоп. Намагничивание происходит:

  • за счет пропускания постоянного тока плотностью от 15 до 20 А/мм через 3-6 витков (создается электромагнитное поле);
  • постоянным магнитом.

Дефектоскопы различаются по способу намагничивания и регистрации рассеяния поля. Каждый вид дефектоскопии сварочных швов стоит рассмотреть подробно.

Катушки намагничивания К-300

Катушки намагничивания К-300 предназначены для намагничивания изделий диаметром до 300 мм в процессе магнитопорошкового контроля. Катушки могут использоваться в составе магнитопорошкового дефектоскопа ДМПУ-1 или работать непосредственно от сети 220 В, 50 Гц. Для работы от сети необходимо использовать коммутационное устройство УК-К-300. При работе с дефектоскопом ДМПУ-1 амплитуда напряженности магнитного поля в центре одной катушки в режимах переменного и постоянного тока – не менее 110 А/см. При работе от сети 220 В, 50 Гц с коммутационным устройством УК-К-300 амплитуда напряженности магнитного поля в центре одной катушки в нормальном режиме (последовательное соединение катушек) – не менее 110 А/см, в усиленном режиме (параллельное соединение катушек) – не менее 220 А/см. При сближении катушек зона эффективного намагничивания сужается, но суммарное поле увеличивается (при совмещении катушек вплотную поле удваивается).

Популярные статьи  Резонанс в электрической цепи

Магнитопорошковый метод контроля (МПД)

Магнитная дефектоскопия

Магнитопорошковый метод — один из самых распространенных методов неразрушающего контроля стальных деталей. Он нашел широкое применение в авиации, железнодорожном транспорте, химическом машиностроении, при контроле крупногабаритных конструкций, магистральных трубопроводов, объектов под водой, судостроении, автомобильной и во многих других отраслях промышленности.

Масштабность применения магнитопорошкового метода объясняется его высокой производительностью, наглядностью результатов контроля и высокой чувствительностью. При правильной технологии контроля деталей этим методом обнаруживаются трещины, усталости и другие дефекты в начальной стадии их появления, когда обнаружить их без специальных средств трудно или невозможно.

Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5 … 2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Суть магнитопорошкового контроля

Магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом.

Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Способы нанесения индикатора

«Cухой» и «мокрый» способы нанесения индикатора на контролируемый объект. В первом случае для обнаружения дефектов используют сухой ферромагнитный порошок. При использовании «мокрого» метода контроль осуществляется с помощью магнитной суспензии, т.е. взвеси ферромагнитных частиц в жидких средах: трансформаторном масле, смеси трансформаторного масла с керосином, смеси обыкновенной воды с антикоррозионными веществами.

Виды намагничивания

При магнитопорошковом методе контроля применяют четыре вида намагничивания:

  • циркулярный;
  • продольный (полюсной);
  • комбинированный;
  • во вращающемся магнитном поле.

Наиболее распространены в практике контроля три первых вида намагничивания. Применительно к простейшим деталям – сплошному цилиндрическому стержню или полому цилиндру – формулировка видов намагничивания может быть следующая.

Циркулярный – это такой вид намагничивания, при котором магнитное поле замыкается внутри детали, а на ее концах не возникают магнитные полюса.

Продольный (полюсной) – это такой вид намагничивания, при котором магнитное поле направлено вдоль детали, образуя на ее концах магнитные полюса.

Комбинированный – это такой вид намагничивания, при котором деталь находится под воздействием двух или более магнитных полей с неодинаковым направлением.

Уровни чувствительности

Выше мы упомянули чувствительность. Давайте подробнее остановимся на этой теме, поскольку понимание всей сути позволит вам лучше разобраться в теме.

Итак, согласно ГОСТу №21105-87 мы знаем, что существует всего три уровня чувствительности. Каждому уровню соответствует своя буква (уровень А, Б, В) и все они зависят от размеров дефектов.

Уровень А самый высокий, чувствительность большая. Есть возможность обнаружить дефекты размером от 2,5 микрометра. Ниже вы можете видеть более подробную таблицу с информацией о других уровнях чувствительности.

Магнитная дефектоскопия

Вы можете видеть, что в таблице указана графа о максимально допустимой шероховатости. Все дело в том, что магнитопорошковая дефектоскопия сварных соединений и успешность ее проведения во многом зависят именно от параметра шероховатости поверхности детали. Есть шероховатость будет превышать допустимые значения, контроль будет менее объективным и точным. Но эту проблему можно частично исправить, если использовать порошок крупной фракции. Его нужно наносить сухим способом. Тогда появится возможность обнаружить глубокие дефекты при повышенной шероховатости поверхности детали.

Выше мы указывали, от чего зависит чувствительность данного метода контроля. Но мы не упомянули, что большое влияние оказывает подвижность частиц магнитного порошка

Важно, чтобы подвижность была высокой или выше среднего. Чтобы этого добиться нужно применять порошок с частицами разной формы

Такой порошок не будет прилипать к детали и позволит проводить более качественный контроль.

Также на чувствительность может влиять род тока, с помощью которого вы намагничиваете деталь при контроле. Мы рекомендуем устанавливать постоянный ток. Он формирует магнитное поле, способное проникать вглубь заготовки, а значит лучше обнаруживать дефекты. На изображении ниже более подробно изображен этот принцип.

Популярные статьи  Какой автомат установить для сварки в гараже?

Магнитная дефектоскопия

Отдельно поговорим о применении сухого и мокрого метода. В своей практике мы обнаружили, что при сухом методе чувствительность существенно повышается. Это значит, что при применении сухого порошка контроль более объективен, чем при использовании суспензии. Кстати, есть свои секреты, как можно повысить чувствительность при применении сухого порошка. Профессионалы рекомендуют распылять порошок в специальном устройстве, которое затем будет подать вещество по шлангу прямо на сварное соединение.

Есть и более продвинутые способы нанесения порошка. Можно поместить деталь в специальную герметичную камеру, где порошок будет находиться во взвешенном состоянии. В таком случае саму деталь нужно погрузить в рыхлое вещество, после чего медленно и аккуратно извлечь. Чувствительность при этом будет очень высокой. Но, в силу трудоемкости этот метод применяется нечасто, хотя все же имеет право на жизнь. Особенно, если нужно провести контроль детали, изготовленной из металла, имеющего немагнитное покрытие.

Магнитно-порошковые дефектоскопы

Эти дефектоскопы позволяют контролировать различные по форме детали, сварные швы, внутренние поверхности отверстий, намагничивая отдельные участки или изделия в целом циркулярным или продольным полем, создаваемым с помощью набора намагничивающих устройств, питаемых импульсным или постоянным током, или с помощью постоянных магнитов. Принцип действия магнитно-порошкового дефектоскопа основан на создании поля рассеяния над дефектами с последующим выявлением их магнитной суспензией. Наибольшая плотность магнитных силовых линий поля рассеяния наблюдается непосредственно над дефектом и уменьшается с удалением от нее. Для обнаружения дефекта на поверхность детали наносят магнитный порошок, взвешенный в воздухе (сухим способом) или в жидкости (мокрым способом). В магнитном поле частицы намагничиваются и соединяются в цепочки. Под действием результирующей силы частицы накапливаются над трещиной, образуя скопление порошка. По этому осаждению – индикаторному рисунку — определяют наличие дефектов.

Физические основы магнитной дефектоскопии

Магнитные методы контроля основаны на обнаружении магнитных потоков рассеяния, возникающих при наличии дефектов в намагниченных сварных соединениях из ферромагнитных материалов. Магнитный поток Ф, проходящий через поверхность, расположенную перпендикулярно силовым линиям однородного магнитного поля, равен произведению магнитной индукции В на площадь этой поверхности.

Способность металла намагничиваться характеризуют абсолютной магнитной проницаемостью. Отношение абсолютной магнитной проницаемости материала к магнитной постоянной называется относительной магнитной проницаемостью и обозначается μ. Эта безразмерная величина показывает, во сколько раз напряженность результирующего поля в намагниченной среде больше напряженности поля, создаваемого током той же силы в вакууме.

В зависимости от значения µ все металлы подразделяются на три группы:

  • диамагнитные (медь, цинк, серебро и др.), у которых μ на несколько миллионных или тысячных долей меньше единицы;
  • парамагнитные (марганец, платина, алюминий и др.), у которых μ на несколько миллионных или тысячных долей больше единицы;
  • ферромагнитные (железо, никель, кобальт и гадолиний, а также некоторые сплавы металлов), у которых μ достигает десятков тысяч.

Магнитные методы контроля могут использоваться только для деталей, выполненных из ферромагнитных материалов. Ферромагнитные свойства металлов обусловлены наличием внутренних молекулярных токов, создаваемых в основном за счет вращения электронов вокруг собственной оси. В пределах малых объемов (10-8… 10-3 см3) элементарных областей (так называемых доменов), магнитные поля молекулярных токов образуют результирующее поле домена.

Если внешнее магнитное поле отсутствует, то магнитные поля доменов, направленные произвольно, компенсируют друг друга. Суммарное поле доменов в этом случае равно нулю, и деталь оказывается размагниченной (рис. 32, а).

Магнитная дефектоскопия

Рис. 32. Ориентация доменов в ферромагнитных материалах: а — размагниченном; б — намагниченном до индукции насыщения; в — с остаточной намагниченностью

Если на металл действует внешнее магнитное поле, то под его влиянием поля отдельных доменов устанавливаются по направлению внешнего поля одновременно с изменением границ между доменами. В результате образуется общее магнитное поле доменов, и металл оказывается намагниченным (рис. 32, б). При намагничивании магнитное поле доменов в контролируемом металле накладывается на внешнее магнитное поле.

Магнитный поток, распространяясь по сварному соединению и встречая на своем пути дефект, огибает его, так как магнитная проницаемость дефекта значительно (примерно в 1 000 раз) ниже магнитной проницаемости основного металла. Вследствие этого часть силовых линий магнитного поля вытесняется дефектом на поверхность, и образуется местный магнитный поток рассеяния (рис. 33). Дефекты, которые вызывают возмущение в распределении силовых линий магнитного поля без образования местного потока рассеяния, невозможно обнаружить методами магнитной дефектоскопии.

Возмущение магнитного потока тем сильнее, чем большее препятствие представляет собой дефект. Так если дефект расположен вдоль направления силовых линий, то возмущение магнитного потока невелико, в то время как аналогичный дефект, расположенный перпендикулярно или наклонно по отношению к направлению магнитного потока, создает значительный поток рассеяния.

Рис. 33. Распределение магнитного потока Ф по сечениям сварных швов без дефектов (а) и с дефектом (б)

В зависимости от способа регистрации магнитного потока рассеяния различают следующие магнитные методы контроля: магнитопорошковый, магнитографический, феррозондовый и магнитополупроводниковый. Для дефектоскопии сварных швов применяются в основном первые три метода, в которых магнитные потоки рассеяния выявляются соответственно с помощью магнитного порошка, регистрируются на магнитную пленку и обнаруживаются феррозондовым преобразователем.

Магнитная дефектоскопия

Полюсное ( а и бесполюсное ( б намагничивание деталей.

Магнитную дефектоскопию ( магнитнопорошковый метод) применяют для контроля деталей из металлов, которые можно намагнитить. Этот метод позволяет обнаружить усталостные и закалочные трещины, волосовины и другие пороки металла, выходящие на поверхность. Сущность метода заключается в следующем. Деталь намагничивают полюсным или бесполюсным ( рис. 123) способом. При наличии на поверхности детали трещины процесс намагничивания сопровождается ( вследствие изменения магнитной проницаемости) концентрацией магнитных силовых линий на заостренных кромках трещины и образованием в этих местах магнитных полюсов.

Магнитную дефектоскопию применяют для контроля деталей из металлов, которые могут быть намагничены. Этот метод позволяет обнаружить усталостные и закалочные трещины, волосовины, включения и другие пороки металла, выходящие на поверхность.

Магнитную дефектоскопию применяют обычно в стационарных условиях на заводах-изготовителях оборудования.

Магнитной дефектоскопией пользуются для выявления неглубоких дефектов ( 1 — 3 мм) в отливках из магнитных сплавов. В этом случае отливку намагничивают и покрывают тончайшим магнитным порошком или суспензией порошка в масле или воде.

Магнитной дефектоскопией можно обнаруживать пороки только в ферромагнитных материалах, таких, как железо, никель, кобальт, углеродистые, низколегированные и некоторые легированные стали.

Магнитной дефектоскопией выявляются очень тонкие несплошности.

5& магнитная дефектоскопия; — JBiR магнитная ( магнитоме.

Метод магнитной дефектоскопии является многообещающим для обследования подземных магистральных трубопроводов. Магнитные дефектоскопы позволяют при малых эксплуатационных расходах выявлять коррозийные повреждения стенок трубы на больших расстояниях, но нужно иметь ввиду, что они малочувствительны к трещинам, хотя и могут обнаруживать достаточно большие трещины, все же для их выявления следует использовать устройства, использующие ультразвук, либо вихревые токи.

Принцип магнитной дефектоскопии иллюстрируются на рис. 6.3. Стенка трубы намагничивается до насыщения блоком постоянных магнитов. Для улучшения контакта с трубой использованы стальные щетки. К аномальным относятся утоньшения стенки, связанные с коррозией внутренней или внешней поверхности трубы, различные повреждения, твердые включения, а также изменения магнитной проницаемости трубы.

Метод магнитной дефектоскопии является многообещающим для обследования подземных магистральных трубопроводов. Магнитйые дефектоскопы позволяют при малых эксплуатационных расходах выявлять коррозийные повреждения стенок трубы на больших расстояниях, но нужно иметь ввиду, что они малочувствительны к трещинам, хотя и могут обнаруживать достаточно большие трещины, все же для их выявления следует использовать устройства, использующие ультразвук, либо вихревые токи.

Принцип магнитной дефектоскопии иллюстрируются на рис. 6.3. Стен ка трубы намагничивается до насыщения блоком постоянных магнитрв. Для улучшения контакта, с трубой использованы стальные щетки. К аномальным относятся утонъшения стенки, связанные с коррозией внутренней или внешней поверхности трубы, различные повреждения, твердые включения, а также изменения магнитной проницаемости трубы.

Принцип магнитной дефектоскопии основан на оценке магнитного потока вдоль участка каната и регистрации изменений в его распределении. Эти изменения могут быть обусловлены рядом причин: изменением площади поперечного сечения каната, наличием обрывов проволок, изменением магнитных свойств материала проволок, например из-за локального термического воздействия, приводящего к изменению структуры металла.

Сущность магнитной дефектоскопии сводится к местной поляризации контролируемого изделия в процессе намагничивания и образованию в зоне дефекта магнитных зарядов противоположных знаков, которые становятся самостоятельными источниками магнитного поля.

Метод магнитной дефектоскопии обладает высокой производительностью и позволяет обнаруживать трещины шириной до 1 мкм.

Isonic 2010 (Sonotron NDT)

Особенности модели

Прибор служит для обнаружения трещин, пор, нарушений сплошности и других дефектов в литых изделиях из пластика, металла, композитных материалов. В отличие от большинства приборов УЗ контроля, модель позволяет визуализировать процесс и точно измерить размеры и расположение отклонений.

Главная фишка этого устройства – использование датчиков с 32 каналами генератора-приемника, что обеспечивает высокую точность обнаружения дефектов, а также послойный контроль с использование фильтра отсечки по глубине. Технология Tru-To-Geometry-Imaging позволяет наблюдать реальное распространение УЗ в исследуемом объекте, а отраженные сигналы отображаются на дисплее в соответствии с фактическим нахождением лучей.

Прибор подходит для ручного и механизированного контроля любых конструкций. Обеспечивает полную запись А-скана независимо от того, в какой точке детали происходит контроль. С помощью Isonic 2010 можно определить геометрию сварного шва, оценить глубину залегания, ширину и протяженность дефектов.

Оборудован сенсорным 6,5” дисплеем с разрешением 650×480 пикселей. Поставляется в алюминиевом ударопрочном корпусе. Выполнен в соответствии со стандартом IP65. Максимальное время автономной работы от аккумулятора 14 часов.

Технические характеристики* Isonic 2010
Параметр Значение
Число каналов 1 или 2
Рабочие частоты, МГц 0,2-25
Регулировка усиления, дБ 0-100 с шагом 0,5
Тип импульса биполярный прямоугольный
Амплитуда импульса 50-300В при нагрузке 50 Ом
Режимы сканирования и визуализации Линейный B-Скан, секторное сканирование (S-Скан), тандем B-Скан,3D, TOFD, B-Скан профиля толщины, поперечного сечения, CB-Скан объекта контроля в плоскости
Размер экрана, дюймы 6,5
Размеры, мм 265×156×130
Масса, кг 3,43

*полный перечень смотрите на официальном сайте.

В ролике ниже вы увидите пример работы с прибором:

Оцените статью