Монтаж кабеля при низких температурах
Если температура окружающий среды позволяет прокладывать кабель, то его предварительно надо нагреть
К этому процессу надо подходить очень осторожно, так как если перегреть кабель, то он придёт в негодность. Конечно, если температура целый день не опускалась ниже 0⁰С, то работы можно производить спокойно (с минимальным нагревом)
Существует несколько способов прогревания кабеля. Какой выбрать вариант – это решение производителя.
- Хранение кабеля в теплых помещениях (специальные теплицы). Продолжительность прогрева зависит от температуры помещения.
- Прогрев электрическим током. С помощью специальных трансформаторов. При использовании этого способа действовать надо быстро и аккуратно. После прогрева кабеля нужно быстро разложить кабель в нужных местах.
Если кабель требуется прокладывать в траншею при низкой температуре, то перед закапыванием необходимо из больших частей земли сделать мелкие фрагменты.
А также предварительно проектировщик должен ознакомиться с условиями, которые могут препятствовать работе. Например, очень сильно промерзшая земля.
Кабели, которые можно не прогревать
- АПвВ.
- АПвВнг-LS.
- ПвВ.
- АпвПу.
- ПвП и другие.
Кабели, которые надо нагревать перед монтажом.
- ПвПу.
- ПвПуг.
- АпвПу2г и другие.
Закон Джоуля-Ленца
В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.
Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:
Q — количество выделяемого тепла (Джоули)
I — сила тока, протекающего через проводник (Амперы)
R — сопротивление проводника (Омы)
t — время прохождения тока через проводник (Секунды)
Параметры, влияющие на нагрев
Процесс нагрева проводов относится к негативному явлению, с которым требуется бороться. В противном случае произойдет повышенный расход энергии или возгорание цепи. Чтобы этого не происходило, нужно контролировать следующие показатели:
- Сечение провода. Этот размер должен выдерживать максимально допустимую нагрузку без нагрева. Расчет ведется с учетом влияния окружающей среды, поскольку проводник находится не в вакууме.
- Теплопроводность материала. Для проводников используется цветной металл: медь, алюминий.
- Разность температур между проводником и окружающей средой. Металл быстрее отдает тепло при большом температурном перепаде.
При разработке электрических цепей все эти факторы должны приниматься во внимание
Способы устранения проблемы
Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.
Бытовая техника
Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.
- Проверьте, по всей ли длине кабель одинаково нагрет, или большая температура наблюдается в одном месте. Частая проблема – плохой электрический контакт вилки и кабеля, идущего к бытовому прибору.
Как устранить:
- Необходимо выкрутить болты крепления корпуса вилки и снять верхнюю крышку.
- Послабить контакты крепления проводов и достать провода.
- Зачистить провода и места контактов – устранить все препятствия на пути прохождения электрического тока. Затем уложить провода на своё место и тщательно затянуть болты.
- Окончательный этап – сборка крышки.
- Плохой контакт кабеля на входе бытового прибора. Если вилка цела, качество контактов на должном уровне, а провод греется с другой стороны, то следует проверить распредкоробку (или как её называют – клеммную коробку) бытового прибора.
Как устранить:
- Выкрутить 4 болта крепления верхней крышки клеммной коробки и снять саму крышку. Под ней размещена клеммная колодка, в которой выполнен прямой контакт входного провода и провода бытового прибора.
- Колодку следует открутить, достать провода и зачистить их, а также места крепления колодки. Для зачистки удобно использовать небольшой надфиль или мелкозернистую наждачную бумагу.
- После зачистки, кабели установить в клеммную колодку, затянуть болтами и поставить на своё место крышку.
- Если кабель греется по всей длине, а розетка рассчитана на допустимый ток бытового прибора, то причина только одна — низкое качество кабеля. Такой проводник следует заменить.
Электропроводка
Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.
Последовательность определения неисправности:
- Основной проблемой может быть место подключения силовых кабелей в квартирном щитке. Обычно входной кабель крепят к медной шине, от которой пойдут провода дальше в квартиру. Ослабленный контакт на шине приводит к постепенному нагреву кабеля, также возможно искрение. Достаточно зачистить провод и немного подтянуть контакты.
Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения
- Ещё одна причина повышения температуры проводника – слабый контакт на автоматическом выключателе или его неисправность. Высокий номинал автомата приводит к постепенному нагреву кабелей, оплавлению изоляции и его возгоранию. Достаточно включить несколько мощных бытовых приборов, например, стиральную машину и бойлер, при неработающем автомате, и результат не заставит себя долго ждать. Плохой контакт проводника и автоматического выключателя
- Распределительная коробка – одно из самых небезопасных мест электромонтажа. Одна недожатая скрутка приводит к сгоревшей изоляции и возможному короткому замыканию. Поэтому все соединения в распределительных коробках лучше выполнять, используя медные клеммники.
Нагрев токоведущих частей при длительном протекании тока
Основные условия нагрева и охлаждения электрооборудования рассмотрим на примере однородного проводника, охлаждающегося равномерно со всех сторон. Если через проводник, имеющий температуру окружающей среды, проходит ток, то температура проводника постепенно повышается, так как вся энергия потерь при прохождении тока переходит в тепло.
Скорость нарастания температуры проводника при нагреве током зависит от соотношения между количеством выделяющегося тепла и интенсивностью его отвода, а также теплопоглощающей способности проводника.
Количество тепла, выделенного в проводнике в течение времени dt, будет составлять:
где I — действующее значение тока, проходящего по проводнику, а; Ra — активное сопротивление проводника при переменном токе, ом; Р—мощность потерь, переходящих в тепло, вm. Часть этого тепла идет на нагрев проводника и повышение его температуры, а остальное тепло отводится с поверхности проводника за счет теплоотдачи.
Энергия, идущая на нагрев проводника, равна
где G — вес токоведущего проводника, кг; с — удельная теплоемкость материала проводника, em•сек/кг•град; Θ — перегрев — превышение температуры проводника по отношению к окружающей среде:
v и vо—температуры проводника и окружающей среды, °С.
Энергия, отводимая с поверхности проводника в течение времени dt за счет теплоотдачи, пропорциональна превышению температуры проводника над температурой окружающей среды:
где К — общий коэффициент теплоотдачи, учитывающий все виды теплоотдачи, Вm/см2 °С; F — поверхность охлаждения проводника, см2,
Уравнение теплового баланса за время неустановившегося теплового процесса можно записать в следующем виде:
Для условий нормального режима, когда температура проводника изменяется в небольших пределах, можно принять, что R, с, К представляют собой постоянные величины. Кроме того, следует учесть, что до включения тока проводник имел температуру окружающей среды, т. е. начальное превышение температуры проводника над температурой окружающей среды равно нулю.
Почему греется проводник
Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы “трётся”, соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.
Из формулы также следует – чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом – будет неравномерный нагрев в месте скрутки. В итоге – подгорание с последующим пропаданием контакта.
Временные и температурные нормы при монтаже
Минимальную и максимальную температуру, при которой можно укладывать кабель указывают производители. Но кроме заводских условий, этот диапазон должен соответствовать нормативным документам.
Нормативы по СНиП:
- Кабели с бумажной изоляцией можно прокладывать д 0⁰С.
- Кабели с защитой из поэтилена до -20⁰С.
- Кабели с ПВХ изоляцией до-15⁰С.
- Все остальные кабели до -7⁰С.
Нормативы по СНиП (рабочее время):
- При температуре до -5⁰С рабочее время составляет не более 2-х часов.
- При температуре до -10⁰С рабочее время составляет не более 1 часа.
- При температуре -20⁰С и больше рабочее время составляет до 30 минут.
- При температуре -40⁰С работы не допускаются.
Монтаж кабеля с помощью электрического тока
- Концы кабеля (жилы) соединяют между собой.
- На это место устанавливают колпак из свинца. Важным моментом считается то, что этот колпак не должен доставать до жил, поэтому отступают 40-50 мм.
- Если другой конец кабеля уже обработан, то его необходимо разделать и соединить с источником тока.
- После прогрева кабель нужно проложить в течение определенного времени.
Нюансы при прогреве кабеля с помощью электрического тока
- За показателем и процессом нагревания кабеля нужно следить через приборы. Например, для мониторинга изменения показателей прикрепляют термометр к оболочке.
- Нельзя превышать максимальное значение нагрева кабеля. Как правило, такие значения устанавливают производители.
- Если в траншею необходимо уложить несколько кабелей, то допускается их совместное прогревание, но за каждый из них должен следить отдельный человек.
- Время укладки кабеля на место зависит от температуры воздуха:
- Если температура 0 – (-10)⁰С, то кабель надо уложить в течение 1 часа.
- Если температура (-10) – (-20) ⁰С, то кабель надо уложить в течение 40 минут.
- Во время прогрева кабелей нужно тщательно следить за техникой безопасности. Кроме того, у людей, которые следят за этим процессом должны быть огнетушители, лопаты и прочие.
- Монтажники должны следовать строго схемам нагрева. Поэтому этим процессом должны заниматься специалисты.
- Как правило, кабели привозят намотанные на барабанах. Так как кабели замерзают, а при резких действиях есть риск потрескивания оболочки, то следует очень аккуратно разматывать кабель.
- Также не следует делать резкие повороты кабеля при низкой температуре.
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
§ 5.1. Предельно допустимые температуры нагрева проводов и кабелей
Электрический ток вызывает нагрев проводов. Количество выделяемого при этом тепла пропорционально квадрату тока, активному сопротивлению проводника и времени протекания тока: (5.1) где Q — количество тепла, дж; I — ток, а; R — активное сопротивление провода, ом: t — время, сек. При выделении тепла температура провода начнет превышать температуру окружающей среды. Вследствие разности температур часть выделяемого в проводе тепла передается в окружающую среду. Нарастание температуры провода будет продолжаться до момента наступления теплового равновесия, т. е. того момента, когда количество тепла, которое получает провод в единицу времени, становится равным количеству тепла, которое отдается в тот же промежуток времени в окружающую среду. При этом температура провода перестанет повышаться. Температура, при которой наступает тепловое равновесие, называется установившейся. Чем больше величина тока, тем выше установившаяся температура. Данной величине длительно протекающего тока при неизменных внешних условиях (температура среды, сила ветра, осадки) соответствует вполне определенная установившаяся температура провода. Па практике часто пользуются не величиной абсолютной температуры, а величиной температуры перегрева, которая равна разности температуры провода и окружающей среды: (5-2) Чрезмерно высокая температура проводов приводит к преждевременному высыханию и старению изоляции, а у голых проводов — к ухудшению контактных соединений за счет интенсивного окисления (значительное повышение переходных сопротивлений). Кроме того, перегрев проводов сверх допустимых величин представляет серьезную опасность (возможен пожар). ПУЭ устанавливают следующие максимальные длительно допустимые температуры проводов и кабелей, при которых обеспечивается их надежная работа: Для проводов с резиновой или полихлорвиниловой изоляцией, шнуров с резиновой изоляцией и кабелей в свинцовой или полихлорвиниловой оболочке с резиновой изоляцией … 65° С Для кабелей с бумажной изоляцией в свинцовой или алюминиевой оболочке для напряжения сети: до 3 кВ 80° С до 6 кВ 65° С до 10 кВ 60° С 20 и 35 кВ .. 50° С Для голых проводов .. 70° С
Температура проводника при данной величине тока достигает своего установившегося значения не мгновенно, а по истечении некоторого времени после включения. Закон изменения величин температуры перегрева провода током может быть выражен следующей формулой:
t — время, сек; е — основание натуральных логарифмов (е = 2,71); Т — постоянная времени нагрева, т. е. время, за которое провод достиг бы установившегося перегрева, если бы не было отдачи тепла в окружающую среду (численно постоянная времени равна отношению теплоемкости провода к теплоотдаче). При отключении провода от сети идет процесс охлаждения его до температуры окружающей среды. Этот процесс может быть выражен уравнением (5.4) На рис. 5.1, а и б показаны кривые нагрева и охлаждения проводника τ = f(t). Величины постоянных времени нагрева зависят от рода проводки, материала, сечения и изоляции проводника. Они определяются экспериментальным путем. Из выражения (5.3) можно легко определить величину перегрева, достигаемого через определенное время. Приведенные формулы позволяют также решить задачу о том, через какое время перегрев проводника достигнет заданной величины.
При переменной нагрузке, когда требуется определить температуру перегрева, начинающегося с некоторой величины τ, можно пользоваться искусственным приемом, при котором процесс нагрева рассматривается как сумма двух процессов:
Применение закона Джоуля-Ленца в жизни
Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины – первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.
Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.
Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
Расчет размера сечения по нагрузке
Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.
Алгоритм расчетных действий следующий:
- для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
- затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
- предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Плюсы и минусы от нагрева электрическим током
- Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
- Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.
Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.
Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.
1.3.33
При напряжении 35 кВ и выше проводники должны быть
проверены по условиям образования короны с учетом среднегодовых значений
плотности и температуры воздуха на высоте расположения данной электроустановки
над уровнем моря, приведенного радиуса проводника, а также коэффициента
негладкости проводников.
При этом наибольшая напряженность поля у поверхности любого
из проводников, определенная при среднем эксплуатационном напряжении, должна
быть не более 0,9 начальной напряженности электрического поля, соответствующей
появлению общей короны.
Проверку следует проводить в соответствии с действующими
руководящими указаниями.
Кроме того, для проводников необходима проверка по условиям
допустимого уровня радиопомех от короны.
Почему нагреваются проводники
Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.
Рис. 1. Электрический ток в проводнике нагревает проводник
Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.
Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .
Опыты Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Правила устройства электроустановок (ПУЭ). Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны (Издание шестое), от 10 декабря 1979 года
Область применения
1.3.1. Настоящая главаПравил распространяется на выбор сечений электрических проводников(неизолированные и изолированные провода, кабели и шины) понагреву, экономической плотности тока и по условиям короны. Еслисечение проводника, определенное по этим условиям, получаетсяменьше сечения, требуемого по другим условиям (термическая иэлектродинамическая стойкость при токах КЗ, потери и отклонениянапряжения, механическая прочность, защита от перегрузки), тодолжно приниматься наибольшее сечение, требуемое этимиусловиями.
Выборсечений проводников по нагреву
1.3.2. Проводники любогоназначения должны удовлетворять требованиям в отношении предельнодопустимого нагрева с учетом не только нормальных, но ипослеаварийных режимов, а также режимов в период ремонта ивозможных неравномерностей распределения токов между линиями,секциями шин и т.п. При проверке на нагрев принимается получасовоймаксимум тока, наибольший из средних получасовых токов данногоэлемента сети.
1.3.3. Приповторно-кратковременном и кратковременном режимах работыэлектроприемников (с общей длительностью цикла до 10 мин идлительностью рабочего периода не более 4 мин) в качестверасчетного тока для проверки сечения проводников по нагреву следуетпринимать ток, приведенный к длительному режиму. При этом:
1) для медных проводниковсечением до 6 мм, а для алюминиевых проводников до 10мм ток принимается как для установок сдлительным режимом работы;
2) для медных проводниковсечением более 6 мм, а для алюминиевых проводников более 10мм ток определяется умножением допустимогодлительного тока на коэффициент , где — выраженная в относительных единицахдлительность рабочего периода (продолжительность включения поотношению к продолжительности цикла).
1.3.4. Длякратковременного режима работы с длительностью включения не более 4мин и перерывами между включениями, достаточными для охлажденияпроводников до температуры окружающей среды, наибольшие допустимыетоки следует определять по нормам повторно-кратковременного режима(см. 1.3.3). При длительности включения более 4 мин, а также приперерывах недостаточной длительности между включениями наибольшиедопустимые токи следует определять как для установок с длительнымрежимом работы.
1.3.5. Для кабелейнапряжением до 10 кВ с бумажной пропитанной изоляцией, несущихнагрузки меньше номинальных, может допускаться кратковременнаяперегрузка, указанная в табл.1.3.1.
Таблица 1.3.1
Допустимая кратковременная перегрузка для кабелей напряжением до 10кВ с бумажной пропитанной изоляцией
Коэффициентпредварительнойнагрузки | Видпрокладки | Допустимаяперегрузка по отношению к номинальной нагрузке втечение, ч | ||
0,5 | 1,0 | 3,0 | ||
0,6 | В земле | 1,35 | 1,30 | 1,15 |
На воздухе | 1,25 | 1,15 | 1,10 | |
В трубах (в земле) | 1,20 | 1,10 | 1,10 | |
0,8 | В земле | 1,20 | 1,15 | 1,10 |
На воздухе | 1,15 | 1,10 | 1,05 | |
В трубах (в земле) | 1,10 | 1,05 | 1,00 |
1.3.6. На периодликвидации послеаварийного режима для кабелей с полиэтиленовойизоляцией допускается перегрузка до 10%, а для кабелей споливинилхлоридной изоляцией до 15% номинальной на время максимумовнагрузки продолжительностью не более 6 ч в сутки в течение 5 сут.,если нагрузка в остальные периоды времени этих суток не превышаетноминальной.
На период ликвидациипослеаварийного режима для кабелей напряжением до 10 кВ с бумажнойизоляцией допускаются перегрузки в течение 5 сут. в пределах,указанных в табл.1.3.2.
Таблица 1.3.2
Допустимая на период ликвидации послеаварийногорежима перегрузка для кабелей напряжением до 10 кВ с бумажнойпропитанной изоляцией
Коэффициентпредварительной нагрузки | Видпрокладки | Допустимаяперегрузка по отношению к номинальной нагрузке припродолжительности максимума, ч | ||
1 | 3 | 6 | ||
0,6 | В земле | 1,5 | 1,35 | 1,25 |
На воздухе | 1,35 | 1,25 | 1,25 | |
В трубах (в земле) | 1,30 | 1,20 | 1,15 | |
0,8 | В земле | 1,35 | 1,25 | 1,20 |
На воздухе | 1,30 | 1,25 | 1,25 | |
В трубах (в земле) | 1,20 | 1,15 | 1,10 |
Для кабельных линий,находящихся в эксплуатации более 15 лет, перегрузки должны бытьпонижены на 10%.
Перегрузка кабельныхлиний напряжением 20-35 кВ не допускается.
1.3.7. Требования кнормальным нагрузкам и послеаварийным перегрузкам относятся ккабелям и установленным на них соединительным и концевым муфтам иконцевым заделкам.
1.3.8. Нулевые рабочиепроводники в четырехпроводной системе трехфазного тока должны иметьпроводимость не менее 50% проводимости фазных проводников; внеобходимых случаях она должна быть увеличена до 100% проводимостифазных проводников.
Вывод
Мы очень надеемся, что теперь вы знаете, как можно объяснить нагревание проводника электрическим током, и понимаете сам процесс. Так же вы должны понимать, с чем связаны определенные ограничения при выборе сечения проводников, и не будет ли слишком велика цена игнорирования этих правил.
Ведь все из них основаны на реальных практических и научных обоснованиях, а электротехника очень жестоко наказывает тех, кто их игнорирует.
При прохождении по проводу электрического тока происходит преобразование электрической энергии в тепловую. Скорость процесса преобразования электрической энергии в тепловую характеризуется мощностью P=UI.
Количество тепла, выделяемого током в проводнике, пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока: Q = I 2 rt (Закон Джоуля-Ленца).
Преобразование электрической энергии в тепловую имеет большое практическое значение для создания ламп накаливания, нагревательных приборов и электрических печей. Однако выделение тепла в проводах и обмотках электрических, машин, трансформаторов, измерительных и других приборов не только бесполезная трата электрической энергии, но и процесс, который может принести к недопустимо высокому повышению температуры и к порче изоляции проводов и даже самих устройств.
Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.
В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается и окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.
По мере увеличения температуры провода растет разность температур провода и окружающей среду к увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловоз равновесие: за одинаковое время количество выделяющегося в. проводе тепла становится равным рассеивающемуся во внешнюю среду.
При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой .
Время нагревания до установившейся температуры неодинаково для различных проводников: нить лампы накаливания нагревается за доли секунды, электрическая машина – за несколько часов (как показывает анализ, теоретически время нагревания бесконечно велико, мы под временем нагревания будем понимать время, в течение которого провод нагревается до температуры, обличающемся от установившейся не более чем на 1%).
Для изолированных проводов нормами установлена предельная температура нагрева 55 – 100° С в зависимости от свойств изоляции и условий монтажа. Ток, при котором установившаяся температура соответствует нормам, называется предельно допустимым или номинальным током провода. Значение номинальных токов для различных сечений проводов приводится в специальных таблицах в ПУЭ и электротехнических справочниках.
Мощность, развиваемая током в проводе, при которой наступает тепловое равновесие к устанавливается допустимая температура, называется допустимой мощностью рассеивания .
Если по проводу проходит ток больше номинального, то провод оказывается «перегруженным». Однако, поскольку установившаяся температура достигается не сразу, кратковременно можно допустить в цепи ток больше номинального (до момента, пока температура провода не достигнет предельного значения). Слишком большая температура провода, как правило, получается при коротком замыкании.