Дифференциальная защита

Принцип действия

Основной функцией дифференциальной защиты является предотвращение межфазных и коротких замыканий в электрической аппаратуре и системах с глухозаземленной нейтралью. Она считается разновидностью релейной защиты и работает путем сравнения токовых величин и направлений тока по сторонам объекта.

В основе работы дифференциальной защиты лежит сравнение фазных токов, которые протекают через защищаемый участок сети или проходят через защищаемую аппаратуру. Сила тока измеряется на концах участков с помощью двух трансформаторов тока, соединенных вторичными цепями с токовым реле. В результате, на обмотку реле поступает разница токов каждого из трансформаторов. Таким образом, дифференциальная защита — это система срабатывания, основанная на разнице токов.Дифференциальная защита
В обычном режиме работы происходит вычитание одного значения тока из другого. Идеальным результатом считается нулевое значение тока в обмотке токового реле. Если же на защищаемом участке возникает короткое замыкание, на обмотку реле поступает не разница, а сумма токов. Под их воздействием контакты реле замыкаются, отдавая команду отключить поврежденный участок.

В реальных условиях эксплуатации ток, протекающий через обмотку реле, всегда будет отличаться от нуля. Он известен как ток небаланса, а его наличие зависит от ряда факторов.

  • Во-первых, оба трансформатора не идентичны и различаются между собой техническими характеристиками. Для уменьшения влияния данного фактора, изготовление трансформаторов тока, участвующих в системе дифференциальной защиты, происходит попарно, с подгонкой между собой еще на стадии изготовления. В качестве дополнительной меры у измерительного трансформатора изменяется количество витков, подгоняемое под коэффициент трансформации защищаемого устройства.
  • Другой причиной появления тока небаланса может стать возникновение намагничивающего тока в обмотках защищаемого трансформатора. При нормальном рабочем режиме значение этого тока может составлять 5% от номинала. Ток намагничивания в некоторых случаях в несколько раз превышает номинальное значение, особенно во время переключения трансформатора с холостого хода на нагрузку и при других переходных процессах. С учетом этого фактора, ток срабатывания в реле устанавливается выше максимального значения тока намагничивания.
  • Ток небаланса иногда появляется из-за неодинакового соединения обмоток, установленных на первичной и вторичной сторонах защищаемого трансформаторного устройства. В таких случаях вектор тока вторичной цепи смещается по отношению к току первичной цепи на 30 градусов. Отрегулировать и компенсировать эту разницу путем подбора витков на трансформаторе, практически невозможно. Данная проблема решается соединением обмоток: на стороне треугольника – звездой, а на стороне звезды – треугольником.

Современные устройства дифференциальной защиты на микропроцессорах способны самостоятельно учитывать эту разницу. Соединение вторичных обмоток измерительных трансформаторов осуществляется на обоих концах способом звезда, о чем указывается в настройках защитного устройства.

Поперечная дифференциальная защита

Поперечная защита, работает также по принципу сравнивания токовых значений. Однако в отличие от продольной системы, установка трансформаторов тока выполняется не на концах защищаемого участка, а на отдельных линиях, подключенных к одному источнику питания. Это могут быть, например, параллельные кабельные линии, отходящие от общего выключателя.

При внешнем коротком замыкании поперечная дифференциальная защита его не сможет определить, поскольку разница значений силы тока на этих линиях будет нулевой. Если же короткое замыкание произойдет на одной из защищаемых линий, в этом случае разница токов будет иметь определенное значение, необходимое для срабатывания защиты. С помощью данной системы в основном выполняется дифференциальная защита линии электропередачи, проложенной по воздуху. В случае аварии выбирается и отключается только поврежденная линия.

Применение в быту

Эти виды защиты возможно применять для жилых зданий в сетях напряжением от 230 до 400 вольт, однако эти устройства называются дифаппаратами. Они бывают двух типов: дифференциальные автоматы и устройства защитного отключения. Принцип их действия основан на следствии из закона Кирхгофа (I закон), который подразумевает следующее правило: значения входящего и исходящего токов должны быть равны. Если образуется ток утечки, то величины не совпадают, и происходит отключение защищенного участка.

Основные причины возникновения тока утечки:

  1. Прикосновение к частям аппаратуры, которая находится под напряжением человека или животных.
  2. Пробои в изоляции линии проводки или аппаратуры.

Дифференциальная защитаВ некоторых случаях автоматика (дифаппарат) срабатывает при отсутствии нагрузки (подключенных потребителей электроэнергии). Основная причина — неисправность аппарата или утечка тока в самой распределительной коробке. Однако если аппарат исправен, то в этом случае необходимо полное отключение всех автоматов после дифаппарата, и проверяются все элементы цепи на предмет пробоя на корпус. Для выбора дифзащиты необходимо учесть помещения и особенности электрических цепей, которые подлежат защите.

Дифзащита — оптимальный выбор для квартир с проводкой без заземления. Для обеспечения наибольшей эффективности необходимо ставить 3-уровневую защиту (несколько устройств на 10, 30 и100−300мА).

Для обеспечения техники безопасности ее необходимо проверять нажатием кнопки «Тест» не реже 2 раз в месяц, желательно это делать регулярно.

Дифавтоматы — более качественная защита, которая выполняет функции УЗО и выключателя. Если в жилом помещении имеется генератор, который получил широкое распространение, то для него также можно применить этот вид защиты. Схема включает в себя токовое реле, которое подключается к трансформатору тока. Реле необходимо установить на статоре между нулевыми точками, включенными звездой. При нормальной работе защита не срабатывает, но при возникновении межвиткового замыкания появляется разница магнитных потоков токового реле и защита срабатывает.

Популярные статьи  АВДТ: автоматический выключатель, управляемый дифференциальным током, со встроенной защитой от сверхтока

Дифзащиту можно также применять и для защиты от многофазных КЗ. Для этого необходимо приобрести специальный дифаппарат для многофазной защиты.

Принцип работы ограничителя перенапряжений

Защитное действие ограничителя перенапряжений обусловлено тем, что появление опасного для изоляции перенапряжения, вследствие высокой нелинейности резисторов через ограничитель перенапряжений протекает значительный импульсный ток, в результате чего величина перенапряжения снижается до уровня, безопасного для изоляции защищаемого оборудования.

В нормальном рабочем режиме ток через ограничитель имеет емкостный характер и составляет десятые доли миллиампера. Но при возникновении перенапряжений резисторы ОПН переходят в проводящее состояние и ограничивают дальнейшее нарастание перенапряжения до уровня, безопасного для изоляции защищаемой электроустановки. Когда перенапряжение снижается, ограничитель вновь возвращается в непроводящее состояние.

Вольтамперная характеристика ограничителя состоит из 3 участков (рис. 5):

  1. — область малых токов;
  2. — область средних токов;
  3. — область больших токов.

В первой области варисторы работают под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение (сопротивление варисторов велико, через них протекает очень малый ток утечки). В режим средних токов варистор переходит при возникновении перенапряжения в сети. При этом на границе 1 и 2 областей происходит перегиб ВАХ, сопротивление варисторов существенно уменьшается и через них протекает кратковременный импульс тока. Варистор поглощает энергию импульса и рассеивает её в окружающее пространство в виде тепла. За счёт поглощения энергии импульс перенапряжения резко падает. Третья область для ограничителя является аварийной, сопротивление варисторов в ней вновь резко возрастает.

Осциллограммы перенапряжений, возникающих при коммутации ВВ без ОПН и с ОПН показаны на рис. 7 и рис. 8.

Рис. 7. Осциллограммы перенапряжений при коммутации ВВ без ОПН.

Рис. 8. Осциллограммы перенапряжений при коммутации ВВ с ОПН.

Вторая группа мероприятий — это усиление изоляции входных витков; установка емкостных колец и электростатических экранов (емкостная компенсация).

Емкостные кольца представляют собой разомкнутые шайбообразные экраны, изготовляемые из металлизированного электрокартона. Этими кольцами прикрывают начало и конец обмотки, тем самым поднимают кривую начального распределения напряжения, приближая ее к кривой конечного распределения.

Уменьшение неравномерности начального распределения напряжения и сближение его с конечным распределением достигаются применением в трансформаторах дополнительных электростатических экранов в виде разомкнутых металлических колец (витков), охватывающих начальную часть обмотки и соединенных с ее вводом. Такой экран создает дополнительные емкости, через которые заряжаются поперечные емкости в обход продольных емкостей.

В результате кривая начального распределения напряжения значительно спрямляется и становится почти такой же, как и кривая конечного распределения для обмоток с заземленной нейтралью. Трансформаторы с изолированной нейтралью также могут снабжаться электростатическими экранами, но в этом случае применяют специальные устройства импидоры, включаемые между нейтралью и землей. Это устройство содержит емкость, включенную параллельно разряднику и реактору, которая при волновых процессах заземляет нейтраль трансформатора, а при промышленной частоте имеет большое сопротивление и практически изолирует нейтраль.

Продольная дифференциальная защита генератора

Особенности монтажа электрического оборудования

Для защиты различных генераторов от многофазных к. з. продольная дифференциальная защита получила наиболее широкое использование. Она подключается так же как и предыдущая к ТТ, только вот устанавливаются они со стороны нулевой точки генератора, а также со стороны выводов. Зона её действия это:

  • обмотки электрической машины;
  • вывода статора;
  • шины или кабеля, которые проложены до распределительного устройства.

Дифференциальная защита

Ток срабатывания такой защиты устанавливается по условию настройки тока небаланса, проходящего в реле дифференциальной защиты при внешних к. з. Приведена схема защиты генератора повышенной чувствительности, с применением самых надёжных для этого случая реле РНТ.

Ток срабатывания такой схемы выставляется по двум условиям:

  1. Настройка реально существующего тока небаланса;
  2. Настройка тока, который будет проходить при обрыве монтажных проводов.

Особенности диф защиты трехобмоточных трансформаторов и автотрансформаторов

Для трехобмоточных трансформаторов мощностью 63 МВА и более и автотрансформаторов следует обеспечить приведенную предельную кратность трансформаторов тока более 25 (9-6), при этом условии можно принять: kпер = 2,5, kсн.торм = 1,0, в = 1,25. Уставку «g» можно принимать g = 0,3.

Остальные уставки выбираются одинаково для всех групп.

Ток срабатывания дифференциальной токовой отсечки выбирается по наибольшему из двух условий: отстройки от броска тока намагничивания и отстройки от максимального тока внешнего короткого замыкания.

По условию отстройки от режима максимального тока внешнего короткого замыкания по следующему выражению:

(9 – 7)

где kотстр – коэффициент отстройки, может быть принят kотстр = 1,1; kнб = 0,7, если для защищаемого трансформатора со всех сторон используются трансформаторы тока с вторичным номинальным током 5 А; kнб = 1,0, если с какой либо стороны используются трансформаторы тока с вторичным номинальным током 1 А. Уставка «g-High» может быть использована, если возможно повышение напряжения более 15% от номинального напряжения ответвления. Уставку «Jnrush Ratio» можно принять равной 12%. Уставка «Jnrush Time» может быть принята равной 5 с, если отсутствуют достаточно точные данные о времени затухания броска тока намагничивания. Для пояснения выбора коэффициентов выравнивания вторичных токов рассмотрим трехобмоточный трансформатор с разными номинальными мощностями сторон, с тем чтобы помимо выравнивания амплитуд использовать возможность изменения опорной величины канала переменного тока. Параметры трансформатора: S110 = 25 МВ•А; U = 110/35/6,3 кВ; S35 = 20 МВ•А; S6 = 5 МВ•А; I110 = 131 А; I35 = 330 А; I6 = 458 А. То же для полной мощности 25 МВА: I110 = 131 А; I35 = 412 А; I6 = 2294 А; трансформаторы тока на стороне 110 кВ: nТТ = 300/5; на стороне 35 кВ: nТТ = 600/5, на стороне 6,3 кВ nТТ = 600/5. Определяем коэффициенты изменения опорных величин канала переменного тока на стороне 110 кВ, 35 кВ и 6,3 кВ:

Популярные статьи  Панели оператора для применения с контроллерами

После изменения опорных величин каналов, опорные токи на сторонах 110, 35 и 6 кВ будут соответственно: 131 А, 330 А и 458 А.

Выбор необходимых векторных групп для компенсации углового сдвига подробно описан выше. На этом расчет уставок срабатывания дифференциальной защиты трансформатора типа RET316 заканчивается.

Схема с однофазным реле

Дифференциальная защита

Напряжение к реле защиты подводится обратным по фазе тому, что нужно для отключения одной линии с повреждением. В нормальной работе (в том числе при наличии внешнего короткого замыкания) по обмоткам реле проходит лишь ток небаланса. Чтобы не произошло ложных отключений, нужно, чтобы пусковые реле имели ток срабатывания больше, нежели ток небаланса. Рассмотрим работу защиты двух линий.

В момент начала короткого замыкания в зоне защиты второй линии протекает некоторый ток

Стоит обратить внимание на то, что:

  1. Пусковое реле срабатывает.
  2. Со стороны одной подстанции реле направлений мощности размыкает контакты выключателя.
  3. Со стороны второй подстанции также происходит отключение линии при помощи выключателей.
  4. В реле направления мощности момент вращения отрицательный, следовательно, контакты разомкнуты.

В обмотках реле защиты первой линии изменяется направление движения тока (относительно первой линии) во время короткого замыкания. Реле направлений мощности удерживает контактную группу в разомкнутом состоянии. Выключатели со стороны обеих подстанций размыкаются.

Только такая дифференциальная защита линии может нормально функционировать лишь при параллельной работе обеих линий. В том случае, если отключается одна из них, нарушается принцип работы дифзащиты. Следовательно, в дальнейшем защита приводит к неселективности отключения второй линии во время внешних коротких замыканий. В этом случае она становится обычной направленной токовой, причем она не имеет временной выдержки. Чтобы избежать этого, поперечно направленная защита во время отключения одной линии автоматически выводится при помощи разрыва блок-контактом цепи.

Принципы действия релейной защиты

Основные принципы действия релейной защиты:

  • Максимальная токовая защита (МТЗ). Критерием срабатывания является достижение током определённого значения (уставки).
  • Направленная максимальная токовая защита. Работа направленной МТЗ предусматривает также и контроль направления мощности.
  • Газовая защита (ГЗ). Предназначена для отключения трансформаторов при возникновении внутренних неисправностей, которым сопутствует газовыделение.
  • Дифференциальная защита. Применяется в основном для защиты генераторов, трансформаторов и сборных шин, при этом производится сравнение токов на входе в защищаемый элемент и на его выходе, при отличии этих параметров на величину равную или большую уставки, происходит срабатывание защиты.
  • Дистанционная защита (ДЗ). Срабатывает при уменьшении сопротивления линии, что происходит при возникновении КЗ.
  • Дистанционная защита с ВЧ-блокировкой. Обычно дистанционная защита с ВЧ-блокировкой выполняется в комплексе с защитой от замыканий на землю. ВЧ-блокировка защит предназначена для ускорения отключения КЗ. Если на защищаемой ВЛ с двух сторон установлены ДЗ и ЗЗ, то КЗ на этой ВЛ обычно отключается 1-3 ступенями этих защит с выдержкой времени примерно от 0 до нескольких секунд. Использование ВЧ-блокировки ДЗ и ЗЗ обеспечивает двухстороннее отключение ВЛ без выдержки времени при любом виде КЗ в любой точке защищаемой ВЛ.
  • Дистанционная защита с блокировкой по оптическому каналу. Также в настоящее время получили широкое распространение защиты с блокировкой по оптическому кабелю. Они являются достойной альтернативой защитам с ВЧ- блокировкой, т.к. в случае их применения отпадает необходимость обслуживать оборудование ВЧ-присоединения, а также возрастает надёжность работы защит по причине более стабильной работы оптического канала, т.к. оптический канал менее подвержен воздействию электрических помех.
  • Логическая защита шин (ЛЗШ). Принцип действия логической защиты шин основан на сравнении поведения защит питающих элементов и отходящих фидеров: защита одного из отходящих фидеров запустилась – КЗ на отходящем фидере, не запустилась ни одна из защит отходящих фидеров – КЗ на шинах. При коротком замыкании на отходящем фидере пускаются зашиты (срабатывают токовые реле) на этом фидере и на питающих элементах секции (ввод трансформатора или секционный выключатель). При КЗ на отходящем фидере по факту пуска его защиты блокируется отключение питающих элементов без выдержки времени. При КЗ на шинах распредустройства защиты отходящих фидеров не пускаются, и при пуске защиты питающего элемента разрешается ее работа без выдержки времени на отключение.
  • Дуговая защита. Дуговая защита применяется в основном для защиты от возгорания КРУ и КТП 6,3 и 10,5. Она устанавливается в ячейках присоединений и реагирует на повышенную освещённость с помощью оптических датчиков или на избыточное давление с помощью датчиков давления (клапанов). Дополнительным входным параметром дуговой защиты является срабатывание токовой защиты (контроль по току), он применяется для исключения возможности ложных срабатываний.
  • Дифференциально-фазная (высокочастотная) защита (ДФЗ) Принцип работы основан на контроле фаз тока на обоих концах линии, в случае, когда фазы тока отличаются на величину равную или большую уставки, происходит срабатывание защиты.

Виды дифзащиты

Рассматриваемая здесь дифференциальная токовая защита может исполняться в двух видах: как продольно действующая, с одной стороны, и работающая по схеме «поперечного» включения, с другой. В первом случае защищаемая обмотка трехфазного трансформатора или двигателя включается в разрыв между двумя сравнивающими дифференциальными катушками устройства защиты дзт (смотрите рисунок ниже по тексту).

Дифференциальная защита
Схема продольной защиты

Максимальная токовая защита

Из этого рисунка видно, что катушки трёх исполнительных реле располагаются между началом и концом обмоток каждой из фаз электропитания.

В отличие от продольной системы, поперечная защита предполагает параллельное включение тех же катушек и основана на учёте разности протекающих в них токов.

Необходимое пояснение. Этот пример подходит лишь для случая, когда рассматривается дифференциальная защита трансформатора, трехфазного двигателя или генератора.

Популярные статьи  Как работает стабилитрон

Для всех других типов потребителей и нагрузок схема её включения будет немного отличаться от исходной.

Вторичная катушка исполнительного реле размещается в этой схеме в разрыве нейтральных проводов обмоток статора, то есть так, как это изображено на приводимом ниже рисунке.

Дифференциальная защита
Схема поперечной защиты

Продольная дифференциальная защита имеет следующие неоспоримые преимущества:

  • Неплохой показатель селективности;
  • Может применяться с другими видами защиты;
  • Система безотказна в работе и имеет высокое быстродействие.

К её недостаткам относится снижение эффективности действия при большой протяженности контролируемых линий.

Поперечная дифференциальная защита линий электропередач

Защита построена идентично продольной и основана на принципе сравнивания токов, только для защиты ВЛ и КЛ, установка трансформаторов тока выполняется на разных линиях, питание, которых осуществляется от одного источника, например, от одного выключателя нагрузки, а не на концах участка линии. Трансформаторы тока должны быть идентичны по своим параметрам, их коэффициент трансформации должен быть одинаков.

Рис №2. Поперечная дифференциальная токовая защита параллельно расположенных высоковольтных линий, а) схема токовых цепей, б) цепи напряжения, г; д) – схема цепей постоянного тока.

После отключения одной из линий, блок-контактами высоковольтных выключателей, дифференциальная защита выводится из работы, это происходит для того, чтобы осуществить устранение неселективности действия при внешнем КЗ.

Принцип действия поперечной дифференциальной защиты, позволяет обходиться без настройки защиты на замедление действия, значит, при КЗ линии, произойдет мгновенное отключение, при КЗ в противоположных концах линии наблюдается каскадное (поочередное) действие дифференциальной защиты.

Рис№3. Каскадное срабатывание дифференциальной защиты: а) КЗ в начале ВЛ; б) КЗ в конце ВЛ

Основные условия выбора тока срабатывания:

  1. При внешних КЗ, не должно происходить срабатывание защиты от максимально высокого тока небаланса.
  2. При отключении одной из подключенных параллельно линий электропередач, если вторая линия полностью, на 100% загружена, не должна осуществляться работа защиты.
  3. Чувствительность защиты зависит от КЗ на границе каскадного действия рядом с точкой равной чувствительности, в которой наблюдается равенство токов в реле комплектов защит обеих линий.

9.1. Виды повреждений трансформаторов и типы используемых защит

9.1.1.
Повреждения трансформаторов и защиты от них

Виды
повреждений:

1.замыкания
между фазами внутри бака трансформатора и на наружных выводах обмоток;

2.замыкания
в обмотках между витками одной фазы (витковые
замыкания
);

3.замыкания
на землю обмоток;

4.повреждение
магнитопровода – пожар железа.

Наиболее часто встречающиеся повреждения – КЗ на
выводах и витковые замыкания. Многофазные КЗ происходят реже. В трехфазных
трансформаторах они маловероятны вследствие большой прочности междуфазной
изоляции; в трансформаторных группах, составленных из трех однофазных
трансформаторов, замыкания между фазами практически невозможны.

При витковых
замыканиях токи, как правило, небольшие, поэтому защиты трансформаторов,
предназначенные для действия при витковых замыканиях, а также при замыканиях на
землю в обмотке, работающей на сеть с изолированной нейтралью, должны обладать
высокой чувствительностью.

Для
ограничения разрушений защита трансформаторов должна действовать быстро.
Повреждения, сопровождаемые большим током должны отключаться без выдержки
времени (время действия защиты составляет 0,05 – 0,1 с.).

Виды защит
трансформаторов от повреждений:

1.Дифференциальная
– мгновенная защита обмоток, вводов и ошиновок трансформатора.

2.Токовая отсечка
– защита ошиновки, вводов и части обмотки со стороны высокого напряжения.

3.Газовая
защита от повреждений внутри бака, сопровождающихся выделением газа, а также
при понижении уровня масла.

4.Защита от замыканий на корпус.

9.1.2.
Ненормальные режимы трансформаторов и защита от них

К ненормальным режимам трансформаторов относят
появление в их обмотках сверх токов при внешних КЗ, качаниях и перегрузках и
повышение напряжения.

1. Внешние
КЗ

При КЗ на
шинах или отходящей от шин линии через трансформатор протекает ток КЗ,
существенно превышающий ток нормального режима. При длительном протекании сверх
тока обмотки трансформатора недопустимо нагреваются.

Для защиты
трансформатора в этом случае используется максимальные токовые защиты (обычная,
или с блокировкой минимального напряжения), направленная защита, токовая защита
нулевой последовательности. В зону действия данных защит должны входить шины
подстанции (1-ая зона защиты) и все присоединения, отходящие от этих шин (2-ая
зона защиты). Эти защиты резервируют действие основных защит сборных шин и
отходящих линий, а также являются резервными защитами при повреждении самого
трансформатора.

2. Перегрузка

Перегрузку
трансформатора порядка 1,5 – 2 от номинального значения можно допускать в
течение десятков минут. Мощные трансформаторы имеют меньшее допустимое время перегрузки.
Кратковременные перегрузки возникают при самозапуске двигателей напряжением 6-10 кВ, подключении мощной нагрузки
и др., отключения трансформатора при этом не требуется. Более длительная
перегрузка при подключении нагрузки от АВР, отключения параллельно работающего
трансформатора, могут быть в течение десятков минут устранены персоналом или
автоматикой.

Защита
трансформатора от перегрузки должна действовать на отключение только в
том случае, когда перегрузка не может быть устранена персоналом или
автоматикой. В остальных случаях защита действует на сигнал.

Защита от
перегрузки выполняется с помощью токовых реле.

3. Повышение
напряжения

В сетях
500-750 кВ при одностороннем отключении длинных линий с большой емкостной проводимостью
вероятно опасное для трансформаторов повышение напряжения. При повышении
напряжения увеличивается магнитная индукция в магнитопроводе трансформатора.
Возрастает ток намагничивания и вихревые токи, что может вызвать пожар железа
сердечника.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: