Перечень основных параметров
Технические характеристики трансформатора тока описываются следующими параметрами:
- Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
- Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
- Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
- Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.
Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.
Перечень основных параметров измерительного трансформатора тока ТТ-В
Трансформатор напряжения при напряжении до 35 кВ
Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.
рис. 2.1 Схема включения однофазного трансформатора напряжения
Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5
В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).
Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.
По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.
Обозначение трансформатора напряжения на схеме
Обозначение трансформатора напряжения на схеме Предохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.
Расшифровка ТН
Расшифровка маркировки:
- Н — трансформатор напряжения;
- Т — трёхфазный;
- О — однофазный;
- С — сухой;
- М — масляный;
- К — каскадный либо с коррекцией;
- А — антирезонансный;
- Ф — в фарфоровом корпусе;
- И — контроль Изоляции;
- Л — в литом корпусе из эпоксида;
- ДЕ — с ёмкостным делителем напряжения;
- З — с заземляемой первичной обмоткой.
Также читайте: Пик-трансформатор
Коэффициент трансформации
Коэффициент трансформации – показывает во сколько раз увеличивается или уменьшается первичное значение напряжение.
Формула по вычислению коэффициента трансформации
Напряжения на вторичной обмотки:
- 100 В,
- 100/√3 В,
- 100/3.
Классы точности
Классы точности:
- 0,1;
- 0,2;
- 0,5 – применяется для измерений;
- 1,0;
- 3,0;
- 3Р или 6Р – предназначены для защиты, управление, автоматика или сигнализация.
Номинальные мощности трансформаторов для любого класса точности следует выбирать из ряда(В·А): 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200.
Подсоединение трансформаторов тока
В процессе выполнения последовательного подключения вторичной обмотки в условиях параллельного подсоединения, позволяет уменьшать трансформирующий коэффициент и увеличивать уровень тока на вторичной цепи. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.
Последовательное подсоединение
При варианте последовательного подключения токовых трансформаторов, обеспечивается повышение нагрузочных показателей. В этом случае применяются трансформаторы, имеющие идентичные показатели kТ.
Соединение обмоток трансформатора последовательно
При протекающем через прибор одинаковом токе, величина поделится на коэффициент два, а уровень нагрузки снизится в пару раз. Применение такой схемы актуально при подсоединении Y/D с целью обеспечения защиты дифференциального типа.
Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор. Трансформатор 220 на 12 Вольт – назначение и принцип действия рассмотрим подробно.
Об особенностях использования и монтажа шины заземления вы узнаете из этой информации.
Параллельное подсоединение
При использовании токовых трансформаторов, обладающих одинаковым уровнем kТ, отмечается появление результативного трансформирующего коэффициента, сниженного в пару раз.
Таким образом, при последовательном подсоединении вторичных обмоток обеспечивается повышение уровня выходного напряжения и показателей мощности в условиях сохранения номинальных значений выходного тока.
Если обмотка вторичного типа на каждом трансформаторе предполагает напряжение на выход 6,0 В при номинальных токовых показателях 1,0 А, то последовательное подсоединение позволяет сохранить номинал, а уровень мощности повышается в два раза.
Параллельное подключение вторичной обмотки в таком варианте помогает обеспечивать показатели напряжения на выходе 6,0 В, а также уровень тока — в два раза выше.
Ошибочные обозначения
Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.
Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра
Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений
Устройство и принцип работы
В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.
Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.
Устройство, схема трансформатора тока:
- две (реже больше) обмотки на магнитопроводе из электростали:
- первичная (включаемая в сеть). Это любая токопроводящая жила;
- вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
- выводы, клеммы.
Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.
Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.
Работа ТТ поэтапно на примере схемы
Трансформатор тока как устроен, принцип работы поэтапно:
- Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
- Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
- Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
- Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
- На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).
Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении
Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ
Схемы групп соединения обмоток 3ф. 2обм. трансформаторов
Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.
Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.
12 группа (Y/Y-12, Д/Д-12)
Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12
11 группа (Y/Д-11, Д/Y-11)
Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11
10 группа (Д/Д-10, Y/Y-10)
Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10
9 группа (Y/Д-9, Д/Y-9)
Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9
8 группа (Y/Y-8, Д/Д-8)
Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8
7 группа (Y/Д-7, Д/Y-7)
Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7
6 группа (Y/Y-6, Д/Д-6)
Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6
5 группа (Y/Д-5, Д/Y-5)
Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5
4 группа (Y/Y-4, Д/Д-4)
Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4
3 группа (Y/Д-3, Д/Y-3)
Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3
2 группа (Y/Y-2, Д/Д-2)
Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2
1 группа (Y/Д-1, Д/Y-1)
Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1
Укажем некоторые особенности отдельных схем:
Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;
Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.
Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;
Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.
Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.
Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.
Силовые трансформаторы
Электроэнергия передается по высоковольтным линиям от генераторов, где она вырабатывается до высоковольтных подстанций потребителя, в целях сокращения потерь, при высоком напряжении равном 35-110 киловольт и выше. Перед тем, как мы сможем использовать эту энергию, её напряжение нужно понизить до 380 вольт, которое подводится к электрощитовым, находящимся в подвалах многоквартирных домов. Трехфазные трансформаторы обычно бывают рассчитаны на большую мощность. В электросетях на трансформаторных подстанциях стоят трансформаторы понижающие напряжение с 35 или 110 киловольт, до 6 или 10 киловольт, наверное все видели такие трансформаторы величиной с небольшой дом:
Фото высоковольтный трансформатор
Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.
Трансформатор 6 киловольт
У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:
Пример соединения обмоток силового трансформатора
Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:
Изображение на схемах трансформатор тока
На фото далее изображены именно такие трансформаторы тока:
Трансформатор тока — фото
Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):
Лабораторный автотрансформатор — изображение на схеме
Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:
Фото ЛАТР
В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:
Безопасный ЛАТР изображение на схеме
Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.
Классификация
В настоящее время промышленно выпускается несколько разновидностей разделительных трансформаторов, предназначенных для безопасной эксплуатации электроустановок. Различают следующие виды таких устройств:
- токовые – первичная катушка служит для подключения источника тока, вторичная направляется к электросчётчику или аналогичному аппарату. Устанавливается в измерительной или релейной электросети;
- пиковые – для преобразования синусоидального напряжения, в большинстве случаев применяются в цифрующих устройствах;
- импульсного типа – преобразуют полученный сигнал в импульс, сглаживают высокочастотные помехи;
- автоматические – в конструкции воедино соединяются входная и выходная обмотки, что формирует связь электрическую, вместе с магнитной;
- силовые – с несколькими обмотками, позволяющими одновременно с передачей трансформировать характеристики;
- портативные – применяются для организации осветительных систем на улице или в помещении.
Аппараты могут предусматривать узкоспециализированные условия применения. Подобные аппараты устанавливаются в медицинских учреждениях для электроснабжения операционных, стационарных и других важных отделений, где предъявляются высокие требования к безопасности.
Разделительный трансформатор
Виды трансформаторов тока
В современном мире существует огромное различных видов трансформаторов, которых можно классифицировать сразу по нескольким признакам.
По месту установки
Начнем с видов трансформаторов, которые классифицируются по месту установки:
- Специальные (используются в транспортных средствах и производственных предприятиях);
- Встроенные (устанавливаются в конструкции других электрических приборах);
- Внутренние (используются в закрытых комплексных предприятиях);
- Наружные (устанавливаются на открытом воздухе);
- Переносные (универсальные, можно устанавливать и на открытом воздухе, и в закрытых лабораториях).
По способу установки
Продолжим видами трансформаторов, которые классифицируются по способу установки:
- Опорные (одноступенчатые и многоступенчатые устройства);
- Проходные (образуют металлическую подставку и устанавливаются на производственных станциях).
По типу витков
Подошла очередь видов тех трансформаторов, которые классифицируются по типу витков:
- С одним витком (имеют форму стержня и используются в производственных предприятиях);
- Со множеством витков (имеют форму петли и устанавливаются в многофазных системах и конструкциях);
- Без первичной обмотки (имеют форму шин и применяются в качестве контроля фаз электрической сети ).
По назначению
Заканчиваем видами трансформаторов, которые классифицируются по различным назначениям:
- Лабораторные (способны обеспечить высокую точность величин);
- Измерительные (являются приборами учета);
- Многоступенчатые (имеют сложное строение, поэтому способны устроить процесс трансформации электротока);
- Промежуточные (способны преобразовать значение тока первичной обмотки или вторичной);
- Защитные.
Принцип работы
Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и 1-ой или 2-х вторичных обмоток(конструкцию конкретного устройства можно посмотреть в паспорте или каталоге от производителя).
В результате изготовления должен быть достигнут необходимый класс точности по:
- амплитуде,
- углу.
Измерительный трансформатор напряжения по принципу работы не отличается от силового понижающего трансформатора или от трансформатора тока.
Ещё раз опишем работу трансформатора тока. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток, который пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключить нагрузку, то по ней начнёт течь ток, который возникает из-за действия ЭДС(электродвижущая сила). ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе.
Принцип работы трансформатора
Магнитопровод стержневого типа
Для питания радиоэлектронных устройств обычно применяются трехфазные трансформаторы с общей магнитной системой через ярмо Я для трех фаз с тремя стержнями С, или трехстержневые трансформаторы. Каждая из обмоток трансформатора, как первичная, так и вторичная, может быть соединена: а) звездой; б) треугольником.
При соединении звездой концы обмоток образуют общую точку 0. При соединении треугольником начало первой фазной обмотки соединяется с концом третьей, начало второй — с концом первой и начало третьей — с концом второй. В первом случае все начала, а во втором общие точки обмоток присоединяются к сети.
Следует отметить, что понятия начала и конца обмоток условны, однако они необходимы для правильного соединения фазных обмоток. В трехфазных трансформаторах положительному направлению тока от начала к концу обмотки должно соответствовать определенное направление магнитного потока в стержнях; в стержневых трансформаторах это направление должно быть одинаковым.
Соединение обмоток: а — звездой; б — треугольником.
Начала фазных обмоток высокого напряжения (ВН) принято обозначать прописными (большими) буквами А, В и С, а концы их — буквами X, У и Z, причем для обмоток фазы используются буквы АХ, ВУ и CZ. Начала и концы обмоток низкого напряжения (НН) обозначаются соответственно строчными (малыми) буквами — а, в, с и х, у, г.
Наибольшее распространение имеют соединения обмоток по схеме «звезда» (Y) и «треугольник» (D), причем первичные и вторичные обмотки могут иметь как одинаковые, так и различные схемы. Если при соединении обмоток «звездой» нулевая точка выводится, то такое соединение называют «звезда c нулем» (Yо).
Соединение обмоток «звездой»
Самым простым и дешевым из них является соединение обеих обмоток трансформатора звездой (Y/Y), при котором каждая из обмоток и ее изоляция (при глухом заземлении нейтральной точки) должны быть рассчитаны только на фазное напряжение и линейный ток.
Соединение обмоток трансформатора звездой.
Так как число витков обмотки трансформатора прямо пропорционально напряжению, то, следовательно, соединение обмоток звездой требует в каждой из обмоток меньшего количества витков, но большего сечения проводников с изоляцией, рассчитанной лишь на фазное напряжение.
У трехфазного трансформатора соединяют обмотки звездой (Y/Y). Такое соединение широко применяют для трансформаторов небольшой и средней мощности (примерно до 1800 кВ-А). Соединение звездой является наиболее желательным для высокого напряжения, так как при нем изоляция обмоток рассчитывается лишь на фазное напряжение. Чем выше напряжение и меньше ток, тем относительно дороже обходится соединение обмоток треугольником.
Где применяют обмотку треугольником
Соединение обмоток треугольником конструктивно удобнее при больших токах. По этой причине соединение Y/D широко применяется для трансформаторов большой мощности в тех случаях, когда на стороне низшего напряжения не требуется нейтрального провода.
При трехфазной трансформации только отношение фазных напряжений U1ф/U2ф всегда приближенно равно отношению чисел витков первичной и вторичной обмоток w1/w2; что же касается линейных напряжений, то их отношение зависит от способа соединения обмоток трансформатора.
Соединение обмоток трансформатора треугольником.
При одинаковом способе соединения (Y/Y или D/D) отношение линейных напряжений также равно коэффициенту трансформации. Однако при различном способе соединения (Y/D или D/Y) отношение линейных напряжений меньше или больше этого коэффициента в √3 раз. Это дает возможность регулировать вторичное линейное напряжение трансформатора соответствующим изменением способа соединения его обмоток.
На значения рабочих характеристик трансформаторов влияют потери энергии при нагреве обмоток в совокупности с другими внешними и внутренними факторами, значительно усложняющими связь формы вторичного напряжения от аналогичных параметров первичной цепи.
Виды трансформаторов тока
Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:
- защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
- измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
- промежуточными – устанавливаемыми в системы релейной защиты;
- лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.
Также читайте: Что такое силовой трансформатор Учитывая характер условий эксплуатации, различают трансформаторы:
- для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;
Три трансформатора тока для 3-х фаз(А, B? C)
- внутренние – применяемые внутри помещений;
ТТ для установки внутри помещений
- встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).
Встроенные ТТ
В зависимости от исполнения первичных обмоток различают устройства:
- одновиткового исполнения;
- многовитковые;
- шинные.
С учётом способа установки их подразделяют на следующие типы:
- проходной;
- опорный.
По числу ступеней изменения тока выделяют трансформаторы:
- одноступенчатого,
- двухступенчатого (каскадного) типа.
Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.
Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.
Обслуживание
Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:
Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
При обнаружении неисправности производится замена прибора
Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.
Общее устройство и принцип работы
Понижающий трансформатор с 220 на 12 вольт покупают водители, дачники, владельцы загородных домов, коттеджей для устройства внутридомовой низковольтной осветительной сети. Временами использование электрического питания 220 вольт в домашнем обиходе экономически нерационально.
Изделие состоит из четырех главных деталей: двух стержней-сердечников и двух катушек из медной проволоки требуемого сечения и длины. Называются обмотками, содержащими неравное количество витков. Стержни-сердечники изготавливают из специальной стали, используемой в электротехнической отрасли. На трансформатор 220 подают ток стационарной электросети.
В первичной обмотке начинается интенсивное движение электронов, создается электродвижущая сила. Образуется магнитное поле, пересекаемое второй обмоткой. В ней появляются электрические потенциалы, поскольку магнитное поле первой катушки вызывает во второй самоиндукцию (движение электронов). Возникает разность электрических уровней, стремящихся уравнять потенциальные значения до нуля.
Перелив электронов с высокого потенциала на конечный нулевой рождает электрический ток. Напряжение во вторичной обмотке зависит от того, во сколько раз в ней меньше витков, чем в первой. Следует помнить, что понижающее электротехническое устройство генерирует в концевой обмотке переменное напряжение с изменением полярности 50 раз в секунду. Получают и постоянный ток, подключая в систему выпрямитель, чтобы на выходе иметь 12 вольт прямого тока.
Существует большой ассортимент электронных понижающих изделий, не содержащих сердечников, катушек.
Понижающими устройствами являются микроскопические электронные схемы в соединении с конденсаторами, резисторами и другими важными элементами. Перед традиционными преобразователями тока имеют неоспоримые преимущества, заключающиеся:
- в компактности;
- в весе;
- в ручной регулировке пониженного напряжения;
- в бесшумной работе;
- в высоком КПД.
Покупатель может выбирать тот трансформатор, в котором нуждается. Это его право.
Изготовленный собственными руками трансформатор рекомендуется эксплуатировать, спрятав его за стенками металлического или деревянного корпуса, имеющего естественную вентиляцию.
Особенности и виды измерительных трансформаторов
Эти агрегаты предназначаются для использования в оборудовании с переменным током. Нужно это для того, чтобы выполнить изоляцию цепи, в которую подключены измерительные устройства, а также реле от сети с высоким напряжением. В противном варианте прикосновение к ним было бы опасным для жизни либо такие приборы имели бы очень сложную конструкцию.
Также, измерительные трансформаторы способны расширить предел измерения данных устройств измерения.
Измерительные трансформаторы бывают:
- Трансформатор тока. Данные агрегаты выполняются двухобмоточного типа и представляют собой повышающий трансформатор. Исходная обмотка тут является проводом, который проходит сквозь магнитопровод. В электрическом оборудовании «ТТ» используют для осуществления питания токовых катушек устройств измерения. Обе обмотки намотаны на один сердечник. Первичная катушка подсоединяется последовательно, а вот к вторичной подключаются сами приборы. Если «ТТ» работает, то его вторичная обмотка обязательно должна быть с нагрузкой.
- Трансформатор напряжения. Конструкция данных агрегатов схожа с силовыми трансформаторами. Первичная и вторичная обмотка тут объединена магнитной цепью, изготовленной из специального ферромагнитного материала. Оптимальный режим работы трансформаторов напряжения считается «режим холостого хода». Обусловлено это отсутствием возможности передавать мощность. Также, отличительной особенностью таких устройств является отсутствие фазового сигнала между напряжениями вторичной и первичной обмотки.
При использовании этих двух устройств можно примерять одно и то же измерительное оборудование, с помощью которого осуществляется контроль параметров тока и напряжения. Вторичная катушка «ТТ» и «ТН» необходимо заземлить. Это позволит уберечь измерительные приборы от случайного появления завышенного напряжения, способного возникнуть при аварийных ситуациях, таких как пробой изоляции и т.д.
Данные устройства классифицируются на конвертор тока в ток, тока в неэлектрическую величину (к примеру, световой поток) и тока в напряжение. К последнему типу относятся трансреакторы либо магнитные трансформаторы.
Вся измеренная данными агрегатами информация способна отображаться в аналоговом или дискретном виде.
Кроме всего этого, измерительные трансформаторы подразделяются согласно:
- Способу монтажа. Сюда относятся проходные, встраиваемые и опорные агрегаты.
- Виду установки. Работа на открытом воздухе, в помещении, встроенные в электрическое оборудование, установленные в специальные установки.
- Согласно числу коэффициента трансформации (один или несколько).
- Количеству ступеней трансформации. Измерительные трансформаторы могут быть каскадные либо одноступенчатые.
- Виду первичной обмотки (один или много витков).
Сегодня в электрическом оборудовании напряжение способно достигать отметки в 750 кВ и даже больше. Ну а токи могут доходить до десяток кило Ампер. Для того чтобы их измерять, используют данные устройства, которые предназначаются для изоляции приборов и реле от цепей с высоким током или напряжением.
Также, эти агрегаты уменьшают напряжение и ток до тех величин, которые удобно измерить.
Благодаря измерительным трансформаторам тока и напряжения удаётся подсоединить амперметр, вольтметр, различные приборы релейной защиты, ваттметр, счётчики энергии.