Способы регулирования в системах автоматики

Системы автоматического регулирования и управления

При изучении данной темы особое внимание следует обратить на 
— состав системы автоматического управления (объект управления и устройство управления) и такие понятия как задающее,  возмущающее и управляющее воздействия;
— принципы управления по задающему воздействию, по отклонению и по возмущающему воздействию; (управление по отклонению возможно при наличии главной отрицательной обратной связи);
— линейные законы управления (пропорциональный, интегральный и дифференциальный)

Тест 1 Файл

При изучении данной темы особое внимание следует обратить на формы записи дифференциальных уравнений
– общую форму записи ,
– стандартную форму записи,
– форму записи в виде передаточных функций.

Тест 2 Файл

Для успешного освоения данной темы необходимо изучить 
— частотные характеристики (амплитудно-фазовая частотная характеристика, амплитудно-частотная характеристика, фазо-частотная характеристика, логарифмические частотные характеристики)
— временные характеристики (типовые входные воздействия, переходная характеристика, импульсная переходная характеристика).

Тест 3 Файл

Для успешного освоения данной темы необходимо изучить временные и частотные характеристики типовых динамических звеньев, к которым относятся: 

— безынерционное звено, 
— интегрирующее звено, 
— апериодическое звено первого порядка (инерционное звено), 
— колебательное звено, 
— апериодическое звено второго порядка, 
— консервативное звено, 
— дифференцирующее звено, 
— форсирующее звено первого порядка, 
— форсирующее звено второго  порядка, 
— звено запаздывания.

Тест 4 Файл

Для успешного освоения данной темы необходимо изучить

— основные сведения о математическом аппарате теории линейных дискретных стационарных систем (решетчатые функции, разностные уравнения, дискретное преобразование Лапласа и  z – преобразование);

— структурно-динамическую схему и дискретные передаточные функции цифровой САУ;
— необходимое и достаточное условие устойчивости дискретной САУ;
— особенности анализа устойчивости линейных дискретных стационарных систем;
— особенности анализа качества   линейных дискретных стационарных систем.

Основная литература —       Кудинов Ю.И. Теория автоматического управления (с использованием MATLAB — SIMULINK) : учебное пособие / Ю. И

Кудинов, Ф. Ф. Пащенко. — 2-е изд., испр. и доп. — Электрон. текстовые дан. — СПб. : Лань, 2018. — 312 с. Режим доступаe.lanbook.com —       Коновалов Б. И., Лебедев Ю. М. Теория автоматического управления : учебное пособие. 4-е изд., стер. – СПб.: Издательство «Лань», 2016.  224 с. Режим доступа e.lanbook.com. —       Герман-Галкин С. Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab Simulink :  учебник.— СПб.: Издательство Лань», 2013.– 448с. Режим доступа e.lanbook.com. Дополнительная литература —         Системы автоматического регулирования и управления : Ч. 1. Практикум/ Сост.: В.М. Бутаков, П.П. Павлов. − КГЭУ, 2017. – 27 с. – Режим доступа: http // lib.kgeu.ru —         Погодицкий О.В., Малёв Н.А. Теория автоматического управления: Учеб.пособие. – Казань: КГЭУ, 2010. – 268 с. —         Погодицкий О.В.  Цифровые системы управления. Учебное пособие – Казань: КГЭУ, 2008.-188с. —         Погодицкнй О.В., Малев Н.А., Ахунов Д.Д., Цветков А.Н. Расчёт и моделирование электроприводов с регуляторами различной конфигурации: лабораторный практикум. Казань: КГЭУ, 2015. – 156 с.
Электронно-библиотечные системы
ЭБС «Лань»
Программное обеспечение дисциплины (модуля)
—       MatLab
—       Microsoft PowerPoint
Интернет-ресурсы 
—         ДК, размещенные в LMS Moodle

Пропустить Навигация

Замкнутый принцип управления

Такая система отличается от предыдущей лишь наличием обратной связи по скорости. Схема ниже:

Способы регулирования в системах автоматики

Наличие обратной связи с тахогенератора 5 сравнивать заданную скорость вращения с реальной и в итоге возникает ошибка ∆U = UП – UТГ. При этом сигнал ошибки будет подаваться на усилитель, который в свою очередь будет увеличивать скорость якоря машины до тех пор, пока ошибка ∆U не станет равной нулю или значению допустимой ошибки. Допустимая ошибка в таких системах определяется необходимой точностью, задаваемой технологическим процессом.

При автоматическом регулировании могут сочетать оба принципа управления и замкнутый и разомкнутый в сочетании друг с другом.

Возмущающие и задающие воздействия

Системы автоматического управления характеризуют по возмущающим и управляющим воздействиям.

Воздействие, стремящееся нарушить функциональную связь между регулируемой переменной и задающим воздействием, называют возмущающим. Для систем показанных выше таким воздействие может быть момент нагрузки, ток возбуждения электродвигателя.

Применительно системы выше напряжение на потенциометре будет задающим воздействием.

Также стоит отметить, что задающее воздействие g(t) может приложено только к элементу сравнения, то возмущающее – к любой точке системы.

Такие воздействия приводят к тому, что требуемые и реальные величины регулирования могут отличатся друг от друга. Разность между такими воздействиями называют ошибкой системы регулирования.

Разность между регулируемой величиной в данный промежуток времени и некоторым ее постоянным значением, принятым за номинальное, именуют отклонением величины регулируемой. (рис. а)).

При постоянном возрастании управляющего воздействия, ошибка регулирования ε(t) будет оставаться постоянной величиной, как показано ниже (рис. б)):

Способы регулирования в системах автоматики

Где: g(t) – воздействие управляющее;

х(t) – величина регулируемая (на выходе системы);

f(t) – воздействие возмущающее;

ε(t) – сигнал ошибки;

Системы с обратной связью

САР имеющая одну регулируемую величину показана ниже:

Способы регулирования в системах автоматики

Введение в данном случае обратной связи заставляет устройство реагировать на изменение возмущения f(t), что делает из устройства некий фильтр, который довольно точно передает управляющее воздействие и подавляет возмущающее. Сигнал, поступающий из выхода на вход, именуют сигналом обратной связи, а разницу между сигналом задания и обратной связью называют ошибкой.

Ошибка, возникающая в каждом элементе устройства, оказывает влияние на вход следующего элемента, тем самым наращивая сигнал ошибки.

Итак, можем сделать вывод что САР – это динамическая система, которая стремится сохранить в допустимых пределах отклонение между заданным и реальным значением регулируемой величины, используя при этом метод сравнения сигналов обратной связи получаемых с выхода устройства, с сигналами, поступающими на вход устройства.

Системы автоматического регулирования

Все рисунки, за исключением рис.102, выполнены автором.

Системы автоматического регулирования (САР) применяются для регулирования отдельных параметров (температура, давление, уровень, расход и т.д.) в объекте управления. В современных системах автоматического управления (САУ) системы автоматического регулирования являются подсистемами САУ и их применяют для регулирования различных параметров при управлении объектом или процессом.

Принцип действия всякой системы автоматического регулирования (САР) заключается в том, чтобы обнаруживать отклонения регулируемых величин, характеризующих работу объекта или протекание процесса от требуемого режима и при этом воздействовать на объект или процесс так, чтобы устранять эти отклонения.

Для осуществления автоматического регулирования к регулируемому объекту подключается автоматический регулятор, вырабатывающий управляющее воздействие на регулирующий орган.

Регулируемый объект и автоматический регулятор вместе образуют систему автоматического регулирования.

Основным признаком САР, является наличие главной обратной связи, по которой регулятор контролирует значение регулируемого параметра.

Пример системы регулирования температуры

На Рис. 87   показана блок схема системы регулирования температуры в объекте, а на Рис. 88  функциональная схема САР, показывающая общий принцип работы любой системы автоматического регулирования.

Популярные статьи  Что такое сила тока

Если температура в объекте равна заданной, то сигнал с датчика X1  равен сигналу с задатчика X0  и сигнал ошибки на входе регулятора е = X1 — X0 = 0, сигнала на выходе регулятора нет, ИМ не работает и клапан открыт на заданную величину, поддерживая заданную температуру. Если, например, температура в объекте увеличиться, увеличиться сигнал с датчика X1,  возникнет ошибка «е», заработает ИМ и, прикроет клапан РО для уменьшения  подачи тепла, температура в объекте уменьшится до заданной.

  • Рис. 88   Функциональная схема САР
  • З – задатчик, для установки заданного значения параметра X0
  • Д – датчик (термопара, терморезистор, датчик уровня, скорости и др. для разных систем)
  • Р – регулятор

ИМ – исполнительный механизм (эл. мотор с редуктором, пневмоцилиндры и др.)

РО – регулирующий орган (кран, вентиль, заслонка и др.)

О – объект регулирования (печь, эл. мотор, резервуар и др.)

  1. У – регулирующее (управляющее) воздействие
  2. Z – помеха (возмущение)
  3. Х – регулируемый параметр
  4. X1– сигнал на выходе датчика
  5. е = X1- X0   ошибка, возникает при отклонении параметра от задания                 
  6. X0 – заданное значение регулируемого (управляемого) параметра может быть постоянным X0 или изменяемым (Ut).
  7. Сигнал с задатчика может быть:

-постоянным X0 = const. для поддержание постоянства регулируемого параметра температуры, давления, уровня жидкости и т. д. (системы стабилизации);

-может изменяться во времени U(t) по определённой программе (программное регулирование);

-может изменяться во времени U(t) в соответствии с измеряемым внешним процессом (следящее регулирование).

Суть установки системы погодного регулирования

Погодное регулирование – новый, абсолютно инновационный шаг для услуг жилищно-коммунального хозяйства. Суть данной установки заключается в следующем: установка необходимой температуры отопления в зависимости от погодных условий. Для этого устанавливаются три датчика – наружный, в трубопроводе на подающем теплоноситель и обратном, который информирует о средней температуре на последних батареях. Они измеряют температуру на северной стороне здания и температуру воды в трубах. Контроллер, находящийся в конструкции, производит расчеты относительно необходимой дельты температур и затем сам производит регулировку скорости и объёма теплоносителя.

Достоинств у данной конструкции множество. Помимо перечисленных выше, существует еще так называемая устойчивость техническая. То есть установка зарекомендовала себя как система, способная к бесперебойной работе, даже в зимнее время, т.к. имеет варианты безаварийной схемы монтажа обвязки насосной группы. Автоматическое погодное регулирование прошло множество испытаний специалистами ООО «АТК», как в условиях производства, так и на базе бета-тестирования.

Способы регулирования в системах автоматики

Экспериментальные методы настройки регулятора

Для значительного числа промышленных объектов управления отсутствуют достаточно точные математические модели, описывающие их статические и динамические характеристики. В то ж время проведение экспериментов по снятию этих характеристик весьма дорого и трудоемко.

Экспериментальный метод настройки регуляторов не требуют знания математической модели объекта. Однако предполагается, что система смонтирована и может быть запущена в работу, а также существует возможность изменения настроек регулятора. Таким образом, можно проводить некоторые эксперименты по анализу влияния изменения настроек на динамику системы. В конечном итоге гарантируется получение хороших настроек для данной системы регулирования.

Существуют два метода настройки — метод незатухающих колебаний и метод затухающих колебаний.

Метод незатухающих колебаний

В работающей системе выключаются интегральная и дифференциальная составляющие регулятора (Ti =Ґ,Td =0), то есть система переводится в закон регулирования П.

Путем последовательного увеличения Kp с одновременной подачей небольшого скачкообразного сигнала задания добиваются возникновения в системе незатухающих колебаний с периодом Tkp . Это соответствует выведению системы на границу колебательной устойчивости. При возникновении данного режима работы фиксируются значения критического коэффициента усиления регулятора Kkp и периода критических колебаний в системе Tkp . При появлении критических колебаний ни одна переменная системы не должна выходить на уровень ограничения.

По значениям Tkp и Kkp рассчитываются параметры настройки регулятора:

  • П-регулятор: K p =0,55 Kkp ;
  • ПИ-регулятор: Kp =0,45 Kkp ; Ti =Tkp /1,2;
  • ПИД-регулятор: Kp =0,6 Kkp ; Ti =Tkp /2; Td =Tkp /8.

Расчет настроек регулятора можно производить по критической частоте собственно объекта управленияwп . Учитывая, что собственная частотаҐп ОУ совпадает с критической частотой колебаний замкнутой системы с П-регулятором, величины Tkp и Kkp могут быть определены по амплитуд и периоду критических колебаний собственно объекта управления.

При выведении замкнутой системы на границу колебательной устойчивости, амплитуда колебаний может превысить допустимое значение, что в свою очередь приведет к возникновению аварийной ситуации на объекте или к выпуску бракованной продукции. Поэтому не все системы управления промышленными объектами могут выводиться на критический режим работы.

Метод затухающих колебаний

Применение этого метода позволяет настраивать регуляторы без выведения системы на критические режимы работы. Так же, как и в предыдущем методе, для замкнутой системы с П-регулятором путем последовательного увеличения KP добиваются переходного процесса отработки прямоугольного импульса по сигналу задания или возмущения с декрементом затухания D=1/4. Далее определяется период этих колебаний Tk и значения постоянных интегрирования и дифференцирования регуляторов Ti ,Td .

  • Для ПИ-регулятора:Ti =Tk /6;
  • Для ПИД-регулятора:T i =Tk /6;Td =Tk /1,5.

После установки вычисленных значений Ti и Td на регуляторе необходимо экспериментально уточнить величину KP для получения декремента затухания D=1/4. С этой целью производится дополнительная подстройка KP для выбранного закона регулирования, что обычно приводит к уменьшению K P на 20 –30%. Большинство промышленных систем регулирования считаются качественно настроенными, если их декремент затухания D равен 1/4 или 1/5.

Формульный метод определения настроек регулятора

Метод используется для быстрой приближенной оценки значений параметров настройки регулятора для трех видов оптимальных типовых процессов регулирования.

Метод применим как для статических объектов с самовыравниванием (таблица 2), так и для объектов без самовыравнивания (таблица 3).

Примечание:T,t ,Kоу — постоянная времени, запаздывание и коэффициент усиления объекта.

В этих формулах предполагается, что настраивается регулятор с зависимыми настройками, передаточная функция которого имеет вид:

где:

Kp — коэффициент усиления регулятора;
Ti —время изодрома (постоянная интегрирования регулятора);
Td —время предварения (постоянная дифференцирования).

Расчёт настроек по частотным характеристикам объекта

Существует специальная аппаратура для экспериментального определения амплитуднофазовой характеристики (АФХ) объекта управления: Эту характеристику можно использовать для расчета настроек ПИ-регулятора, гд главным критерием является обеспечение заданных запасов устойчивости в системе.

Запасы устойчивости удобно характеризовать показателем колебательности системы M, величина которого в системе с ПИ-регулятором совпадает с максимумом амплитудно-частотной характеристики замкнутой системы. Для того чтобы этот максимум не превышал заданной величины, АФХ разомкнутой системы не должна заходить внутрь окружности с центром P и радиусом R, где

Можно доказать, что оптимальными по минимуму среднеквадратичной ошибки регулирования настройками будут такие, при которых система с показателем колебательности MЈM 1 будет иметь наибольший коэффициент при интегральной составляющей, чему соответствует условие Kp /Ti >min.

В связи с этим расчет оптимальных настроек состоит из двух этапов:

  1. Нахождение в плоскости параметров Kp и Ti , границы области, в которой система обладает заданным показателем колебательности M1 .
  2. Определением на границе области точки, удовлетворяющей требованию Kp /Ti .

Расчёт настроек по частотным характеристикам объекта. Методика расчёта настроек ПИ регулятора по АФХ объекта

Популярные статьи  Автоматический предохранитель

  1. Строится семейство амплитудно-фазовых характеристик разомкнутой системы при Kp =1 и различных значениях Tij (5 –6 значений).

  2. Задаются значения показателя колебательности M из диапазона 1,55Ј MЈ 2,3 (рекомендуется М=1,6). Из начала координат проводят прямую OE под угломb =arcsin(1/M1 ), где M 1 — выбранное значение показателя колебательности.
  3. Строится семейство окружностей,касающихся АФХoj и прямой OE под угломb, причем центр окружностей все время лежит на отрицательной действительной оси. В результате построения определяются радиусы этих окружностей Rj .
  4. Для каждой окружности вычисляют предельное значение K p
  5. По значениям Kpj и Kij строят границу области заданного показателя колебательности.
  6. На этой границе определяют точку,для которой отношение Kp /T i максимально.

Возможно, вам также будет интересно

Отношение сигнал-шум является показателем качества и основной характеристикой передачи сигнала для любой системы, будь то автоматическая система управления технологическим процессом или аэрокосмический аппарат. Очевидно, что чем больше отношение сигнал-шум, тем лучше работает система или устройство, однако использование мощных сигналов зачастую нецелесообразно, и разумным решением становится по…

Первые приборы для измерения электрических зарядов, сопротивления и тока — гальванометры — были созданы еще в конце XVIII в. Позже они также стали использоваться как приемники телеграфных линий.

Разработанная Rockwell Automation конвейерная система iTRAK отличается от подобных решений рядом важных особенностей. Модульная, настраиваемая система линейного перемещения обеспечивает независимое управление прямыми и криволинейными перемещениями, что существенно повышает производительность по сравнению с традиционными технологиями, использующими цепи, транспортеры и механизмы с качающимся рыч…

Классиффикация регуляторов

Автоматические регуляторы классифицируются по назначению, принципу действия, конструктивным особенностям, виду используемой энергии, характеру изменения регулирующего воздействия и т.п.

По принципу действия они подразделяются на регуляторы прямого и непрямого действия. Регуляторы прямого действия не используют внешнюю энергию для процессов управления, а используют энергию самого объекта управления (регулируемой среды). Примером таких регуляторов являются регуляторы давления. В автоматических регуляторах непрямого действия для его работы требуется внешний источник энергии.

По роду действия регуляторы делятся на непрерывные и дискретные. Дискретные регуляторы, в свою очередь, подразделяются на релейные, цифровые и импульсные.

По виду используемой энергии они подразделяются на электронные, пневматические, гидравлические, механические и комбинированные. Выбор регулятора по виду используемой энергии определяется характером объекта регулирования и особенностями автоматической системы.

По закону регулирования они делятся на двух-и трехпозиционные регуляторы, типовые регуляторы (интегральные, пропорциональные, пропорционально-дифференциальные, пропорционально- интегральные и пропорционально- интегрально- дифференциальные регуляторы — сокращенно И, П, ПД, ПИ и ПИД-регуляторы), регуляторы с переменной структурой, адаптивные (самонастраивающиеся) и оптимальные регуляторы. Двухпозиционные регуляторы нашли широкое распространение благодаря своей простоте и малой стоимости.

По виду выполняемых функций регуляторы подразделяются на регуляторы автоматической стабилизации, программные, корректирующие, регуляторы соотношения параметров и другие.

Постоянство параметров и условий

В отличие от коэффициента передачи преобразователя, коэффициент исполнительного механизма очень часто бывает непостоянен. Характеристики демпферов, клапанов и насосов обычно приводят к нелинейной связи между относительным положением и потоком жидкости. С изменением рабочей точки исполнительного механизма нелинейность будет негативно сказываться на устойчивости всей системы.

Свойства процесса, определяющие его коэффициенты передачи, также могут часто изменяться. Например, для реактора на рисунке 1 три кривые показывают, как меняется температура при скачкообразном увеличении скорости испарения (при высокой и низкой производительности) и при циклическом изменении скорости испарения.

Стоит отметить, что для этого реактора стационарное значение температуры при скачкообразном изменении потока пара обратно пропорционально производительности. Когда производительность мала, поток пара сильнее влияет на выходную температуру.

От производительности зависят и динамические свойства реактора. Чем меньше производительность, тем больше время отклика.

Когда скорость потока пара периодически меняется, амплитуда колебаний температуры оказывается существенно ниже, поскольку температура не успевает достичь стационарных значений. Таким образом, цикличность сглаживает отклик.

Такое поведение является типичным для многих процессов. Коэффициенты передачи часто зависят от производительности, которая свою очередь влияет на время отклика системы. При высокой производительности параметры изменяются менее инерционно и более плавно. Коэффициент передачи процесса становится меньше, что позволяет увеличить коэффициент контроллера, следовательно, регулировка становится четче. При низкой производительности наоборот, процесс сложнее контролировать, поскольку переменные реагируют с большой задержкой и скачкообразно. Коэффициент передачи процесса увеличивается, возрастает коэффициент обратной связи, и система становится неустойчивой.

Коэффициент передачи процесса часто определяется рабочей точкой. Более высокая температура уменьшает скорость реакции и снижает выход продукта. Изменение рабочей точки – плотности часто приводит к снижению чувствительности параметров процесса от скорости потока ингредиентов. Аналогично изменение геометрии емкости часто уменьшает чувствительность определения уровня жидкости.

В реакторе коэффициент передачи процесса зависит от заданной точки. Когда заданная точка соответствует высокой концентрации определенного ингредиента, остальные компоненты с меньшей массовой долей начинают сильнее влиять на чистоту конечного продукта. Например, при 99% концентрации ингредиента А, изменение в 1% концентрации вещества В (при неизменном объеме) удваивает загрязнение продукта. В то же время при 80% концентрации вещества А и однопроцентном изменении концентрации В, загрязнение увеличивается всего на 1/20. Существенные изменения рабочих точек, что может понадобиться при получении нескольких продуктов, часто требуют перенастройки или компенсации.

Регулирование при наличии шумов

Наличие высокочастотных шумовых составляющих в измерительном сигнале приводит к случайным колебаниям исполнительного механизма системы, что увеличивает дисперсию ошибки регулирования и снижает точность регулирования. В некоторых случаях сильные шумовые составляющие могут привести систему к неустойчивому режиму работы (стохастическая неустойчивость).

В промышленных системах в измерительных цепях часто присутствуют шумы, связанные с частотой питающей сети

В связи с этим важной задачей является правильная фильтрация измерительного сигнала, а также выбор нужного алгоритма и параметров работы регулятора. Для этого используются фильтры низкой частоты высокого порядка (5 –7), имеющие большую крутизну спада

Их иногда встраивают в нормирующие преобразователи.

Таким образом, главной задачей регулятора является компенсация низкочастотных возмущений. При этом, с целью получения минимальной дисперсии ошибки регулирования, высокочастотные помехи должны быть отфильтрованы. Однако, в общем случае, эта задача противоречивая, так как спектры возмущения и шума могут накладываться друг на друга. Это противоречие разрешается с помощью теории оптимального стохастического управления, которая позволяет добиться хорошего быстрод йствия в системе при минимально возможной дисперсии ошибки регулирования. Для уменьшения влияния помех в практических ситуациях применяются два способа, основанных на:

  • уменьшении коэффициента усиления регулятора Kp , то есть, фактически, переход на интегральный закон регулирования, который малочувствителен к шумам;
  • фильтрации измеряемого сигнала.

Выбор типа регулятора

Задача проектировщика состоит в выборе такого типа регулятора, который при минимальной стоимости и максимальной надёжности обеспечивал бы заданное качество регулирования.

Для того чтобы выбрать тип регулятора и определить его настройки, необходимо знать:

  • Статические и динамические характеристики объекта управления.
  • Требования к качеству процесса регулирования.
  • Показатели качества регулирования для серийных регуляторов.
  • Характер возмущений,действующих на процесс регулирования.

Выбор типа регулятора обычно начинается с простейших двухпозиционных регуляторов и может заканчиваться самонастраивающимися микропроцессорными регуляторами.

Рассмотрим показатели качества серийных регуляторов. В качестве серийных предполагаются непрерывные регуляторы, реализующие законы управления И, П, ПИ и ПИД.

Теоретически, с усложнением закона регулирования качество работы системы улучшается. Известно, что на динамику регулирования наибольшее влияние оказывает величина отношения запаздывания к постоянной времени объекта с . Эффективность компенсации ступенчатого возмущения регулятором достаточно точно может характеризоваться величиной динамического коэффициента регулирования Rd , а быстродействие — величиной времени регулирования. Теоретически, в системе с запаздыванием минимальное время регулирования tpvin =2/.

Минимально возможное время регулирования для различных типов регуляторов при оптимальной их настройке определяется таблицей 1.

Таблица 1

Закон регулирования П ПИ ПИД
tp /t ,где t p – время регулирования,t –запаздывание в объекте 6,5 12 7

Руководствуясь таблицей, можно утверждать, что наибольшее быстродействие обеспечивает закон управления П. Однако, если коэффициент усиления П-регулятора KP мал (чаще всего это наблюдается в системах с запаздыванием), то такой регулятор не обеспечивает высокой точности регулирования, так как в этом случае велика величина статической ошибки. Если KP имеет величину равную 10 и более, то П-регулятор приемлем, а если KP<10 то требуется введение в закон управления интегральной составляющей.

Наиболее распространенным на практик является ПИ-регулятор, который обладает следующими достоинствами:

  1. Обеспечивает нулевую статическую ошибку регулирования.
  2. Достаточно прост в настройке, так как настраиваются только два параметра, а именно коэффициент усиления K P и постоянная интегрирования Ti . В таком регуляторе имеется возможность оптимизации Kp /Ti >max, что обеспечивает управление с минимально возможной среднеквадратичной ошибкой регулирования.
  3. Обладает малой чувствительностью к шумам в канале измерения (в отличие от ПИД-регулятора).

Для наиболее ответственных контуров можно рекомендовать использование ПИД-регулятора, обеспечивающего наиболее высокое быстродействие в системе. Однако следует учитывать, что это условие выполняется только при его оптимальных настройках (настраиваются три параметра). С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество работы ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора. Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора,что увеличивает дисперсию ошибки регулирования. Таким образом, ПИД-регулятор следует выбирать для систем регулирования с относительно малым уровнем шумов и величиной запаздывания в объекте управления. Примерами таких систем являются системы регулирования температуры.

При выборе типа регулятора рекомендуется ориентироваться на величину отношения запаздывания к постоянной времени в объектеt/T. Еслиt/T< 0,2, то можно выбрать релейный, непрерывный или цифровой регуляторы. Если 0,2 <t/T< 1, то должен быть выбран непрерывный или цифровой, ПИ или ПИД-регулятор. Еслиt /T >1, то выбирают специальный цифровой регулятор с упредителем, который компенсирует запаздывание в контуре управления. Однако этот ж регулятор рекомендуется применять и при меньших отношенияхt /T.

Характеристики автоматических систем управления отопительной системой

На данный момент на рынке представлена широкая номенклатура отопительной автоматики. Несмотря на отличия в конструкции, функционале и параметрах, ко всей автоматике предъявляются одни и те же требования, выполнение которых является обязательным.

Первым и самым важным требованием является надежная и эффективная обратная связь, которая достигается за счет наличия высокочувствительных термодатчиков. При работе автоматики минимальные перепады температуры все же будут появляться, и задача датчиков – не допустить заметного перепада.

Кроме того, важным параметром при выборе автоматики для отопления является понятный и приятный интерфейс, который позволит осуществлять регулировку без каких-либо усилий и знаний (подробнее: «

Регулировка системы отопления — подробности из практики

«). За такую простоту придется заплатить, поскольку даже самая простая управляющая панель скрывает под собой сложный контроллер для системы отопления. Надежность этих устройств очень высока, но и стоимость соответствует высокому качеству.

Все устройства должны быть безопасными и надежными – это обязательное условие. Монтаж таких систем обычно выполняется квалифицированными специалистами, но есть и такие модели, которые можно установить самостоятельно.

Разомкнутый принцип управления

В таких системах не используют обратные связи и по своей структуре они довольно просты. Пример схемы такой системы показан ниже:

Способы регулирования в системах автоматики

Это система управления скоростью вращения якоря двигателя постоянного тока которая имеет следующий алгоритм работы: задающее воздействие перемещает движок 2 потенциометра 1, тем самым меняя напряжение на усилителе 3. Изменение напряжения приводит к изменению тока машины 4 и соответственно его скорости вращения. Измерение скорости вращения машины измеряют с помощью тахогенератора 5 и с помощью стрелочного прибора 6 приводят напряжение на выходе тахогенератора к доступному для человеческого глаза виду. Если движок потенциометра будет приводить в движение человек, то такое управление называют ручным.

В данной схеме отсутствует обратная связь, поэтому ее называют разомкнутой. Регулирование координат таким образом довольно проблематичное занятие, так как чтоб получить точное значение скорости необходимо провести довольно точную градуировку системы, что довольно таки затруднительно. Даже при отличной градуировке все элементы системы подвержены износу, что делает необходимым производить частые градуировки. Также при изменении какого – то параметра (например, возрос момент нагрузки вала) скорость вращения электродвигателя просядет, но система никак не отреагирует на это. Поэтому, если нужно поддреживать какую – то из переменных величин постоянной, используют замкнутые системы управления.

Что такое энергосервис

Энергосервис — это комплекс мер по проведению энергосберегающих мероприятий в зданиях или на объектах. Цель этих работ — снижение затрат заказчика на энергоресурсы при сохранении условий, когда в здании комфортно находиться. Для России это направление достаточно новое как для потребителей, так и для поставщиков услуг.

Энергосервисом в столице занимаются частные компании. Государственное казенное учреждение «Энергетика», находящееся в ведении городского Департамента жилищно-коммунального хозяйства, обеспечивает развитие и контроль в этой сфере, способствует внедрению энергосберегающих технологий в Москве. Учреждение помогает наладить сотрудничество частных энергосервисных фирм с префектурами, управляющими компаниями и непосредственно горожанами. Для этого создана горячая линия, специалисты которой готовы ответить на все вопросы по энергосбережению. Получить консультацию можно в рабочие дни с 09:00 до 18:00 по телефону.

Недавно ГКУ «Энергетика» получило статус регионального центра энергосбережения города Москвы. Это дает учреждению возможность формировать нормативную базу, готовить изменения в столичное законодательство об энергосбережении, способствовать повышению энергоэффективности, создавать типовые формы энергосервисных договоров, контролировать исполнение этих договоров, консультировать горожан.

Способы регулирования в системах автоматики

Сейчас сотрудничество идет, как правило, через префектуры. Районные власти при поддержке и совместно с ГКУ «Энергетика» и управляющими организациями проводят встречи москвичей с представителями энергосервисных компаний. Но возможен и обратный процесс. Инициативные жильцы сами обращаются в ГКУ «Энергетика» с просьбой найти для них инвестора и заключить энергосервисный договор.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: