Способы защиты от перенапряжений в электрических сетях

Какие меры защиты существуют в данном случае

Первое молниеотвод. Многоэтажки уже снабжены грозозащитой дома в целом. В частных домах, молниеотвод, это забота хозяев. Он должен быть с надёжным, испытанным электролабораторией заземлением и разрядниками различных конструкций.

Чтобы исключить возможное попадание грозового импульса через кабель необходимо его отключить от устройства. Например, отключить сетевой кабель от компьютера или маршрутизатора. Либо если идет речь о телевизоре – отключить антенный кабель или кабель кабельного телевидения.

Но не только молния является причиной замолчавших телевизоров. Отгорел нуль – подпрыгнуло напряжение в каких-то фазах из-за их перекоса и пр..

Устройство

Первичным и основным элементом, из чего состоит ограничитель перенапряжения, служит варистор, выполняющий роль нелинейного переменного резистора. Конструктивно ОПН состоят из варисторов, размещенных в корпусе, изготовленном из фарфора или высокопрочного полимера. Конструкция ограничителя выполнена с учетом условий, обеспечивающих взрывобезопасность, в случае возникновения токов короткого замыкания. В зависимости от назначения и места установки ОПН могут быть исполнены в различных вариантах. Для ограничителей, используемых для защиты линий электропередач и оборудования промышленных объектов, на крышке корпуса предусмотрен контактный болт для подключения к сети, в комплект ОПН входит изолированная от контакта с землей плита основания.

Способы защиты от перенапряжений в электрических сетях

Устройства, предназначенные для защиты от пиковых импульсов напряжения электрохозяйства квартиры или дачного домика, очень компактны, имеют привлекательный дизайн, а также снабжены устройством для крепления на din-рейку. В зависимости от категории сложности, могут быть обустроены индикацией режимов работы и дистанционным управлением.

Устройство модульного ограничителя перенапряжения предоставлено на фото:

Способы защиты от перенапряжений в электрических сетях

где:

  1. Корпус
  2. Предохранитель
  3. Сменный варисторный модуль
  4. Указатель износа варисторного модуля
  5. Насечки на зажимах

Источники возникновения импульсных помех

Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4–6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.

Различают источники ИП:

  1. Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
  2. Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.

Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Способы защиты от перенапряжений в электрических сетях

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Как правильно защитить бытовую технику

Не стоит недооценивать важность защиты от скачков напряжения. Регулярные перепады в сети приводят в неисправное состояние электронику точного оборудования, выводят из строя реле и двигатели холодильников, морозильных камер. Часто даже способствуют сгоранию техники

Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами

Часто даже способствуют сгоранию техники. Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами.

Реле контроля напряжения

Реле контроля напряжения трехфазное ZUBR 3F, 5А

Такая защита от повышенного напряжения позволяет мгновенно отключать все приборы от сети. Устройство контролирует параметры Вольт и при их резком повышении блокирует подачу питания к бытовой технике. После того как сеть стабилизирует свою работу, аппарат снова включается в работу и запускает технику.

Различают точечные реле (вилки и переходники), а также устройства по типу автомата для установки на DIN-рейку к распределительному щитку. В первом случае аппараты контролируют и защищают отдельные бытовые приборы. Так сказать, являются индивидуальными. Второй вариант — это надежный автомат защиты от перепадов напряжения в сети для всего дома.

Стабилизатор напряжения

Релейный стабилизатор напряжения

Такая защита по напряжению предполагает изменение параметров по Вольтам до тех пор, пока они не будут приведены к нормальному состоянию. К примеру, стиральная машина или телевизор, подключенные через стабилизатор, работают всегда на одном напряжении. Если аппарат улавливает резкий скачок, то пропускает к бытовой технике лишь нормальный показатель 220-230 В.

Популярные статьи  Экономическая сущность компенсации реактивной мощности

Главные технические параметры стабилизаторов — время реакции на скачок, точность стабилизации, диапазоны входного напряжения и уровень издаваемого шума.

Все устройства такого типа делят на несколько видов:

  • Релейные. Самые дешевые виды стабилизаторов. Имеют низкий уровень мощности. Если и используются до сих пор, то на отдельные бытовые устройства.
  • Электромеханические (их еще называют сервоприводными). Рабочие характеристики подобных аппаратов мало отличаются от стабилизаторов релейных. Единственная разница между первыми и вторыми – чуть более высокая цена.
  • Электронные. Подобные устройства собирают на базе симистора или тиристора. Такие стабилизаторы отличаются хорошей мощностью, долговечностью, точностью реакции на скачки напряжения. При максимально быстром своем действии электронные устройства обеспечивают надёжную защиту от перепадов напряжения.
  • Электронные двойного преобразования. Подобные стабилизаторы — самые дорогие из всех. При этом они хорошо защищают как отдельные бытовые приборы, так и всю электросеть в доме. Выделяют одно- и трехфазные устройства. Первые применяют в быту. Вторые — на крупных промышленных, коммерческих объектах. Стабилизаторы двойного преобразования способны сглаживать резкие перепады в диапазонах от 90 до 380 Вольт с отменной точностью.

ИБП (источник бесперебойного питания)

Источник бесперебойного питания (ИБП) APC Back-UPS CS 650VA/400W

Главная задача ИБП — не защита от высокого напряжения, а обеспечение автономного резервного электроснабжения при резких и непродолжительных отключениях энергии. Подобные аппараты особенно нужны в частных домах, если в поселке остро стоит проблема частого отключения света.

Есть также разновидность источника бесперебойного питания с функцией стабилизатора. Если случится резкий высокий скачок напряжения, такой ИБП способен мгновенно переключиться на резервное питание и выровнять параметры Вольт в сети до оптимальных.

Датчик перепадов напряжения

Сетевой фильтр MOST EHV 2м (белый)

Это небольшое устройство, так же как и реле, контролирует скачки напряжения в сети. Но его монтируют сразу с УЗО (устройством защитного отключения). Если датчик выявляет нарушение сетевых параметров, он провоцирует утечку тока. В этом случае УЗО обнаруживает её и отключает питание на дом в аварийном режиме.

Выбор разрядников

Прежде всего, нужно определиться с классом прибора:

  1. Класс A ― это устройства для защиты от прямого удара молнии в электросеть или в объект, расположенный рядом с ЛЭП. Устанавливаются снаружи, обычно в местах подключения кабеля к воздушной линии. Если есть молниеотвод, то устанавливаются в обязательном порядке. Надёжно справляются с импульсами 6 кВ.
  2. Класс B ― эти приборы устанавливаются на вводах в здания при условии, что наружная защита уже имеется. Наиболее часто применяются в качестве первой линии защиты частных домов. Порог срабатывания составляет 4 кВ.
  3. Класс C ― защита от остаточного перенапряжения величиной до 2,5 кВ. Как правило, устройства этого класса размещаются в распределительных щитах, но предпочтительней установка рядом с защищаемым электроприбором на расстоянии не более 5 м. Поскольку ток в заземляющем проводе молниеотвода создаёт импульс перенапряжения в проводах электропроводки, то при его наличии ограничитель следует располагать на минимально возможном расстоянии.
  4. Класс D ― ограничители для оборудования чувствительного к импульсному перенапряжению. Их подключение желательно, если расстояние от устройства C до оборудования более 15 м. Их монтаж допустим, если уже имеется защита более высокого уровня, иначе они выйдут из строя при первом же импульсе выше 1,5 кВ.

В соответствии с указанным ранжиром создаются схемы селективной защиты. Самой популярной является схема B ― C , которая надёжно защищает от перенапряжения 1,5 ― 2,5 кВ. Для защиты дорогостоящей электронной аппаратуры сооружается защита от A до D включительно.

Выбор по параметрам

Выбирать конкретное защитное устройство, работающее на разрядниках или варисторах, нужно по следующим параметрам:

  • максимально допустимое рабочее напряжение, при котором устройство остаётся в исходном состоянии;
  • значение номинального напряжения указывает при каком перенапряжении в момент запуска оборудования ограничитель будет заблокирован на 10 секунд;
  • номинальный ток разряда, по величине которого определяется класс устройства;
  • величина пропускаемого тока показывает, какое перенапряжение может быть сброшено без выхода прибора из строя;
  • устойчивость к медленному увеличению напряжения показывает возможность пропускания прибором аномальных токов без критических последствий;
  • максимально допустимый ток, пропускаемый устройством;
  • устойчивость к коротким замыканиям, способных вывести ограничитель из строя, но не приводящих к взрыву корпуса.

Остальные значения, указанные в техническом паспорте нужны для проведения испытаний и наладки систем защиты на промышленных предприятиях. Поскольку создание системы защиты от перенапряжения дело ответственное, то если нет опыта лучше монтаж разрядников и заземления поручить специалистам.

Защита от перенапряжения в частном доме

Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

Устройство защиты от импульсных перенапряжений (УЗИП)

Различают УЗИП — варисторы и разрядники различных конструкций, обычно имеющие индикаторы, подающие сигнал об отключении. Варисторы обладают определенными недостатками: после срабатывания они должны остыть, что снижает уровень готовности грозозащиты при неоднократных ударах молний. Они крепятся на DIN-рейку, поэтому их легко заменить в случае необходимости.

Популярные статьи  Как работают отделители и короткозамыкатели

Способы защиты от перенапряжений в электрических сетях

Защита от перенапряжения и надежность применения устройства зависит от эффективности заземления с равными потенциалами TN-S или TN-CS, разделением защитного и 0-провода. УЗИП устанавливают с шагом 10 м по кабелю, чем обеспечивается расчетная последовательность срабатывания УЗИП.

На воздушных линях УЗИП устанавливается из разрядников и плавких вставок, в общем домовом щитке — варисторы кл. I, II, а на этажах — III кл. При необходимости дополнительной защиты розетки оборудуют в виде сетевых удлинителей.

Как подключить УЗИП в частном доме?

Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.

Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.

В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.

В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.

В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.

Ответы на вопросы про УЗИП на видео:

Защита от перенапряжения с использованием разрядников

Способы защиты от перенапряжений в электрических сетях

Грозовые, квазистационарные и коммутационные перенапряжения воздействуют на работоспособность электрооборудования. Основные защитные устройства — РВ (вентильные разрядники) и ОПН (нелинейные ограничители перенапряжений). Надежность их работы зависит от:

  • Выбора числа устройств, их параметров и места расположения.
  • Внутренней защиты от перенапряжений самого разрядника, который не защищен от такого вида воздействия.
  • Испытаний в нормальных условиях, они не должны пробиваться.

Разрядники для защиты от перенапряжений (варистор) состоят из резистора и искрового просвета, соединенных последовательно. Такая схема подключения меняет характеристики во влажной среде, поэтому их герметично закрывают. Этот вид разрядников срабатывает бесшумно и не дает выбросов газа и пламени.

Способы защиты от перенапряжений в электрических сетях

Явление перенапряжения в наших сетях не редкость, системы электроснабжения устарели, так как не рассчитаны на современный возросший бытовой уровень жизни потребителей. Раздувшиеся нагрузки потребления электричества разрушают изношенные сети, в результате чего перепады напряжения случаются все чаще и чаще.

Подводя итог, следует сказать, что методы защиты от перенапряжения, конечно, рассчитаны на защиту от поражения высоким напряжением оборудования и людей, но не дают гарантии на 100%. Во время грозы и коммутационных явлений в сети лучшая защита всегда — это полное отключение от электросети дорогостоящего оборудования.

Внешняя защита от молний

В первую очередь это молниеотвод, который устанавливается на самой высокой точке дома, соединенный проводником с системой заземления. Еще до недавнего времени громоотвод соединялся к заземлителем, который одновременно служил и системой заземления в доме. Как выяснилось опытным путем, такой защиты недостаточно для того, чтобы спокойно чувствовать себя в грозу. Чтобы не пугать никого описанием, что бывает в случае, когда молния пробивает заземление (200 тыс. А!), необходимо показать устройство и схему нормально функционирующего молниеотвода.

Молниеприемник, который устанавливается на крыше, бывает 2 видов. Это либо высокий металлический штырь, который вертикально выставляется при помощи деревянных стоек, либо трос, протянутый вдоль всего конька крыши и уложенный на деревянные подпорки.

Есть еще вариант, когда на крышу укладывают металлическую сетку, сваренную из арматур сечением 8–10 мм², с шагом ячеек 2–5 м. В принципе, особенной разницы между ними нет.

Способы защиты от перенапряжений в электрических сетях

Молниеприемник в виде троса, протянутого по коньку крыши

Тросовые молниеприемники охватывают большую площадь крыши и считаются более безопасными, а сеточные не портят внешнего вида дома. Сечение молниеприемника должно быть не меньше 12 мм², хотя лучше всего арматура с запасом — 16 мм². При установке штыря необходимо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 20–30 см, то же самое относится и к тросовому приемнику.

Способы защиты от перенапряжений в электрических сетях

Молниеотвод в виде штыря

Примечание. Зона, которую защищает громоотвод, примерно равна его высоте. Например, при высоте над землей 6 м он защитит от попадания молнии территорию круга с радиусом 6 м.

Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10 мм² или медный провод сечением не меньше 6 мм². Это как раз тот случай, когда кашу маслом не испортить: чем толще будет провод, тем безопаснее. Проводник соединяется с приемником сваркой или при помощи болтового соединения, конец провода обжимается наконечником. Кабель опускается по наружной стене дома, к которой он крепится при помощи пластиковых хомутов. Они, в свою очередь, приделываются к стене при помощи дюбельей. Желательно, чтобы это была глухая стена, противоположная входной двери, без окон. Проводник не должен проходить мимо металлических элементов (лестниц, водопроводных и водосточных труб) ближе чем на 30 см.

Способы защиты от перенапряжений в электрических сетях

Сетка из арматуры равномерно защищает всю крышу

Теперь отдельно о системе заземлителя. Он не должен быть совместным с заземлителем контура заземления дома. Это отдельное устройство, и характеристики его должны быть такими же, как у заземлителя дома. Его также надо углублять в землю на 3 м и приваривать к токоотводу.

Популярные статьи  Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Примечание. При современном строительстве для оштукатуривания дома используют металлическую сетку, которая поддерживает раствор на стене, армируя его. Эта сетка — неплохая защита от наведенных токов, которые часто случаются во время грозы, даже когда молния не ударяет поблизости.

Модульные ограничители перенапряжения

Для защиты электросетей на распределительных подстанциях, а также непосредственно на воздушных линиях электропередач применяются нелинейные ограничители перенапряжений, так называемые ОПН. Основной конструктивный элемент данных защитных устройств – варистор, элемент с нелинейными характеристиками. Нелинейность характеристик заключается в изменении сопротивления варистора в зависимости от величины приложенного к нему напряжения.

   Модульный ограничитель перенапряжения

В нормальном режиме работы электросети, когда напряжение находится в пределах номинальных значений, ограничитель напряжения имеет большое сопротивление и не проводит ток. В случае возникновения импульса перенапряжения, который возникает при попадании молнии в провода электрической сети, сопротивление варистора ОПН резко снижается до минимальных значений и нежелательный импульс уходит в заземляющий контур, к которому подсоединен ограничитель перенапряжения.

Таким образом, ОПН ограничивает скачки напряжения до безопасного уровня. Тем самым защищая оборудование и потребителей от повреждения и других негативных последствий перенапряжений.

Для реализации защиты от перенапряжений в домашней электропроводке существуют компактные модульные ограничители перенапряжений. Такое защитное устройство устанавливается в домашний распределительный щиток и не занимает много места.

Модульный ОНП имеет такой же принцип работы, как и ограничители, применяемые в электросетях. Соответственно он будет работать только при наличии рабочего заземления электропроводки. В противном случае установка модульного ОПН будет бесполезна, так как в случае возникновения перенапряжения в сети опасный импульс не будет ограничен.

Способы защиты от перенапряжений в электрических сетях

   Ограничитель импульсных перенапряжений ОПС1-С

То есть для реализации защиты домашней электропроводки от грозовых перенапряжений при помощи модульного ограничителя перенапряжений обязательным условием должно быть наличие работоспособного заземления.

Характеристики импульсного перенапряжения

Энергонасыщенность современных промышленных и жилых объектов, наличие разветвленной электрической сети от проектировщиков систем защиты требует грамотного выбора устройств защиты от импульсных перенапряжений (УЗИП). Для этого необходимо разобраться в основных параметрах, характеризующих возникающие импульсы перенапряжения, а именно:

  • форму волны тока (характеризуется временем нарастания и спада);
  • амплитуда тока.

Для описания токов разряда молнии применяют 2 вида формы волн: удлиненную (10/350 мксек) и короткую (8/20 мксек). Первая соответствует непосредственному (прямому) попаданию разряда молнии и показывает нарастание тока за 10 мксек до максимального импульсного значения (I imp) и снижению его показания в 2 раза за 350 мсек. Короткая волна наблюдается при удаленном разряде молнии и при коммутационных процессах. Она характеризует нарастание тока за 8 мксек до максимума (I max) и спад до половины значения за 20 мксек. Импульс 10/350 мксек воздействует на электросеть в десятки раз дольше, чем 8/20 мксек, поэтому он более опасен для защищаемых объектов.

Последствия перенапряжения в сети

Воздействие состояния перенапряжения может полностью вывести из строя электрооборудование, вызывать сбои в работе устройств, привести к пожарам, а порой и к взрывам. По количеству случаев второе место в стране занимают пожары, вызванные перенапряжениями в сети, когда ток мгновенно растет до сотни тысяч ампер, резко выделяется огромное количество тепла в электропроводке или приборах, с последующим воспламенением их изоляции или пластмассовых изделий.

Способы защиты от перенапряжений в электрических сетях

Перепады напряжения губительно влияют на все бытовые электроприборы, защитить их можно только применяя специальное устройство защиты от перенапряжения.

Устройство защиты от импульсных перенапряжений (УЗИП)

УЗИП бывает двух видов:

  • ограничители перенапряжения (ОПН). В основе этого устройства находится варистор. При нормальной работе сетей, когда нет скачков напряжения на линии, ограничитель напряжения не проводит ток и обладает большим сопротивлением. Как только возникает кризисная ситуация, сопротивление варистора устройства моментально понижается до самого минимального значения. Таким образом, импульс отправляется в заземляющий контур. ОПН таким образом ограничивает колебания напряжения и делает их безопасными. Оборудование и люди, находящиеся в помещении, оказываются под надежной защитой. ОПН занимает немного места, активно используется в частных домах;
  • искровые и вентильные разрядники – вариант для сетей высокого напряжения. При возникновении большого скачка напряжения происходит пробой воздушного слоя, фаза замыкается на заземление, и весь разряд идет в землю.

В домашней электрической проводке устанавливаются модульные ограничители перенапряжения. Их монтируют в распределительный щиток, поэтому они совершенно не занимают место. По своей сути, это такой же ограничитель, как и то, что используется в электросети. Заработает он только тогда, когда возникнет критическая ситуация

Но крайне важно, чтобы было проведено заземление электропроводки. Если такой нет, то модульный ОПН будет совершенно бесполезным

Заключение

В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: