Тонкопленочные солнечные батареи

Сравнительная таблица российских, тайваньских и китайских солнечных батарей

Производитель Наименование Технология производства Пиковое напряжение, В Пиковый ток, А Пиковая мощность, Вт Габариты, мм Ориентировочная цена на российском рынке, руб.
«Телеком-СТВ», Зеленоград ТСМ-100А поликристалл 17 5,6 96 1050х665х43 8429
РЗМП, Рязань RZMP-130-T поликристалл 15,9 6,65 105 1490х670х36 14600
«Хевел», Новочебоксарск HEVEL P7 микроморфная 56,6 2,21 125 1300х1100х24 10000
Green Energy Technology, Тайвань GET-115AT2 аморфный кремний 93,9 1,22 115 1300х1100х20* 7000
Chinaland Solar Energy, Китай CNH100-36M монокристалл 19,3 5,18 100 1200х540х30 6350

Рекомендуем: Управление газовым котлом через смартфон: суть новаторских схем координации работы оборудования на расстоянии

* — без алюминиевой рамки

В конечном итоге потребителю самому решать, какие панели ему выбрать. В качестве рекомендации хочется отметить, что для автономного электроснабжения дома можно порекомендовать поликристаллические модели солнечных батарей. Да, монокристаллические панели более эффективны, но не стоит забывать, что это довольно условно.

Максимальная мощность монокристаллических элементов будет достигнута лишь в солнечный день с использованием систем поворота светочувствительных элементов. Поэтому данные панели в большей степени подойдут жителям южной полосы России, где количество солнечных дней максимально

В остальных же регионах при проектировании систем автономного электроснабжения имеет смысл обратить свое внимание на сравнительно новые панели, произведенные по микроморфной технологии, которые способны преобразовывать в электричество не только солнечный ультрафиолет, но и инфракрасное излучение. Это их достоинство может с лихвой покрыть недостаток низкого КПД

Замечу напоследок, что лично я отдал предпочтение поликристаллической панели, поскольку предназначена она для временного электроснабжения дачного домика в летний период. Отсюда следует, что планируемая нагрузка — небольшая, световой день продолжительный и солнечный. Поэтому поликристаллическая солнечная батарея в моем случае наиболее оптимальна.

Тонкопленочные солнечные батареи преимущества

Батареи такого типа получили несколько серьезных преимуществ, которые смело можно назвать существенными. Итак, в какие плюсы и тонкопленочных батарей:

  1. Маленький вес. Такие батареи выполнены из очень легких материалов, поэтому устанавливать и работать с ними – это одно удовольствие.
  2. Полупрозрачность. Именно такое свойство позволяет устанавливать их даже на окна. В таком случае часть света будет идти в помещение, а другая часть, преобразовывая электричество.
  3. Гибкость. Такие панели можно устанавливать практически на любую плоскость, изогнутое состояние не нарушает работоспособности.
  4. Ударопрочность. Пленка остается работоспособной во время сильного града, падения на землю и т.д.

Тонкопленочные солнечные батареи

Метод вакуумирования

Тонкопленочные солнечные батареи

Способ предусматривает использование вакуумных камер или электронных пушек для осаждения из пара диселендов.

В принципе, использовать можно любые подходы, например, ионное распыление, но все методы имеют свои сложности, такие как образование пленки как на подложке, так и на внутренней поверхности камеры. Другая сложность связана с поставками индия, активно применяемого для изготовления плоскопанельных мониторов.

У таких устройств КПД может превышать отметку 20%.

Хотя активно развиваются панели этого типа, их востребованность невелика и не превышает 2%.

Большую популярность завоевали пленки, в изготовлении которых используется кадмия теллурид, Их КПД 16% (против 18%). Большой популярностью пользуются батареи аморфно-кремниевое. Их КПД удалось увеличить до 10%.

Абсорбция

Для увеличения количества света, попадающего в ячейку, и уменьшения количества, которое уходит без поглощения, использовалось несколько методов. Наиболее очевидный метод — минимизировать покрытие верхнего контакта поверхности ячейки, уменьшая площадь, которая блокирует попадание света в ячейку.

Слабо поглощаемый длинноволновый свет может быть направлен в кремний под углом и несколько раз проходит через пленку для увеличения поглощения.

Было разработано несколько методов увеличения поглощения за счет уменьшения количества падающих фотонов, отражающихся от поверхности клетки. Дополнительное антибликовое покрытие может вызвать деструктивную интерференцию внутри элемента, изменяя показатель преломления поверхностного покрытия. Деструктивная интерференция устраняет отражающую волну, в результате чего весь падающий свет попадает в ячейку.

Текстурирование поверхности — еще один вариант увеличения впитываемости, но увеличивает затраты. Нанося текстуру на поверхность активного материала, отраженный свет может преломляться и снова падать на поверхность, тем самым снижая коэффициент отражения. Например, текстурирование черного кремния с помощью реактивного ионного травления (RIE) является эффективным и экономичным подходом к увеличению поглощения тонкопленочных кремниевых солнечных элементов. Текстурированный обратный отражатель может предотвратить выход света через заднюю часть ячейки.

Помимо текстурирования поверхности, большое внимание привлекла схема плазмонного улавливания света, способствующая увеличению фототока в тонкопленочных солнечных элементах. Этот метод использует коллективные колебания возбужденных свободных электронов в наночастицах благородных металлов, на которые влияют форма, размер и диэлектрические свойства частиц окружающей среды.. Помимо минимизации потерь на отражение, сам материал солнечного элемента может быть оптимизирован, чтобы иметь более высокий шанс поглощения фотона, который достигает его

Методы термической обработки могут значительно улучшить кристаллическое качество кремниевых ячеек и тем самым повысить эффективность. Также может быть выполнено наслоение тонкопленочных элементов для создания многопереходных солнечных элементов. Ширина запрещенной зоны каждого слоя может быть спроектирована так, чтобы наилучшим образом поглощать различный диапазон длин волн, чтобы вместе они могли поглощать больший спектр света.

Помимо минимизации потерь на отражение, сам материал солнечного элемента может быть оптимизирован, чтобы иметь более высокий шанс поглощения фотона, который достигает его. Методы термической обработки могут значительно улучшить кристаллическое качество кремниевых ячеек и тем самым повысить эффективность. Также может быть выполнено наслоение тонкопленочных элементов для создания многопереходных солнечных элементов . Ширина запрещенной зоны каждого слоя может быть спроектирована так, чтобы наилучшим образом поглощать различный диапазон длин волн, чтобы вместе они могли поглощать больший спектр света.

Популярные статьи  Источники питания 24 и 12 Вольт

Дальнейшее продвижение к геометрическим соображениям может использовать размерность наноматериала. Большие параллельные массивы нанопроволок обеспечивают большую длину поглощения по длине проволоки, сохраняя при этом короткие длины диффузии неосновных носителей заряда в радиальном направлении. Добавление наночастиц между нанопроводами обеспечивает проводимость. Естественная геометрия этих массивов образует текстурированную поверхность, которая улавливает больше света.

Миф 6: Избыток электроэнергии хранится в системе

Факт: Это правда, но количество накопленной электроэнергии ограничено глубиной заряда аккумуляторов. На практике подключить систему альтернативной энергии к электросетям в России и Украине практические невозможно. В Европе и США распространена генерация энергии в сеть. Если система подключена к электрической сети, можно отдавать избыток энергии в местную энергетическую сеть, записывая бонусы на свой счет. Если вам понадобится большое количество электричества в ночное время (когда система не работает) можно использовать электроэнергию из сети совершенно бесплатно. Это делается автоматически, так что пользователи даже не замечают момента переключения. Надеемся в скором времени у нас тоже упростят процедуру подключения к сетям.

Самые интересные достижения в мире тонкопленочных модулей

2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.

Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.

Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.

Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты. Промышленное производство «солнечной» ткани намечено на март 2015 года.

Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.

Статью подготовила Абдуллина Регина

В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!

Материалы для изготовления тонкопленочных источников.

Тонкопленочные солнечные батареи могут быть выполнены из следующих материалов:

  • аморфный кремний,
  • сульфид кадмия,
  • индий,
  • галлий,
  • кристаллический кремний.

Производных данных материалов очень много и все они используются в производстве батарей. Из-за большого объема сульфидов и оксидов изучение их способностей в области солнечной энергетики затруднено, но работы ведутся во всех направлениях.

Тонкоплёночные батареи уникальны тем, что имеют необычную в данной области особенность – вырабатывать электрическую энергию при отсутствии прямых солнечных лучей. Это означает, что в пасмурный или короткий зимний день, солнечные батареи на подобной основе могут вырабатывать до 15% энергии сверх положенной нормы. Это не только позволяет таким батареям обойти стандартные солнечные элементы, а полностью обогнать их в своем развитии. К тому же тонкоплёночные солнечные батареи открывают дорогу подобным модулям в уникальных туманных районах нашей планеты и в местах, где пасмурная погода составляет основной процент всех метеоусловий. К тому же тонкоплёночные солнечные элементы могут найти свое применение в местах с повышенной запыленностью и увеличенным наличием микрочастиц в воздухе. Рекомендуем: Какой настенный двухконтурный газовый котел лучше: ТОП-6 лучших по надежности, характеристикам и качеству моделей и фирм, как выбрать навесной котлоагрегат для отопления и ГВС, актуальные цены

Как работает технология

Принцип действия солнечных батарей основан на возможности взаимодействия солнечного света (а это электромагнитное излучение) с веществом. При этом взаимодействии энергия фотонов (световых частиц) передается электронам вещества, то есть, энергия света преобразуется в постоянный электрический ток.

Явление было открыто еще в 19 веке, и получило название фотоэлектрического эффекта (фотоэффекта). Для его возникновения и поддержания необходимы фотоэлектрические преобразователи (фотоэлементы), полупроводники по способу функционирования.

Полупроводник – материал с избытком или недостатком электронов. В полупроводниковом элементе имеется два слоя с разной проводимостью. Слой с лишними электронами играет роль катода, слой с недостатком электронов – анода. В большинстве современных изделий роль полупроводников выполняют кремниевые пластины, обладающие необходимыми полупроводниковыми свойствами.

Отдельные фотоэлементы имеют слишком малую мощность, чтобы питать электроприбор. Поэтому их объединяют в электрическую цепь, которая формирует то, что называют солнечной батареей (или панелью). Устройство имеет следующее строение:

  • Изделие выглядит как панель, в которой заламинированы кремниевые пластины, ответственные за преобразование энергии.
  • Сверху панель защищает закаленное стекло. Чтобы повысить эффективность, выбирают марку стекла с низким содержанием оксидов железа. Благодаря такому решению достигается высокая прозрачность, что также играет на эффективность системы.
  • Благодаря ламинации панель получается полностью герметичной, а используемые материалы делают ее стойкой к ветровым и снеговым нагрузкам.
Популярные статьи  Реверс и торможение асинхронного двигателя с короткозамкнутым ротором

Мифы и реальность

Пока технология изготовления пленочных солнечных батарей не составляет реальной конкуренции поли/монокристаллическим аналогам. Прежде всего из-за дороговизны используемых материалов. Тем не менее, на ТВ, в сети и среди розничных продавцов бытует несколько мифов о чудо свойствах этой технологии.

  • Тонкопленочные солнечные батареи могут работать в пасмурную погоду. Отчасти это правда, но правда и в том, что любые солнечные панели работают в пасмурную погоду, выдавая при этом меньшую силу тока или вольтаж, в зависимости от модели. Пленочные так же точно снижают свою производительность.
  • Пленочные батареи не снижают производительность при нагреве. Это откровенное вранье. Снижение производительности гораздо сильнее поли/монокристаллических аналогов. Поэтому при монтаже таких панелей следует обязательно предусмотреть возможность вентиляции их задних стенок.
  • Дешевле. На самом деле дороже (см. недостаток 2)
  • Могут принимать любую форму. Здесь правда, только вот толку, как показывает практика, от этого никакого. Панели располагаются в плоскости для достижения максимального эффекта.
  • Можно свернуть в трубочку и тогда свет будет поступать на них почти весь день. Действительно такое «сенсационное» изобретение приносит прирост в производительности меньше, чем использование той же площади аналогичных батарей в плоском виде.
  • Увеличенный срок службы. На самом деле нет. Срок службы пленочной панели – 10-12 лет, в то время как поликристаллические модели служат от 15 до 20 лет.
  • Можно использовать вместо стекол в окнах. При этом улицы вы видеть практически не будете, а эффективность такой полупрозрачной панели позволит вам в течении дня от одного окна зарядить один мобильный телефон. Сомнительное преимущество.
  • Экологичность. Т.к. в батареях применяются сплавы полупроводников из индия и кадмия, то кремния используется гораздо меньше. При этом продавцы уверяют, что кремний – это вещество по вредности между ураном и мышьяком, забывая, что 1/3 земной коры состоит из него.
  • Время окупаемости. Реклама пленочных батарей говорит, что они окупаются на 2-3 год эксплуатации. На самом деле нет. Срок службы пленочных солнечных батарей (10-12 лет) и их стоимость, не позволяет им окупиться вообще при нынешних ценах на электроэнергию.

Советуем изучить — Виды и причины износа электрооборудования

Сколько стоит установка домашней солнечной электростанции

Цена установки солнечных батарей на крыше в основном зависит от двух факторов: вида системы и ее мощности. И если с мощностью все понятно — чем она больше, тем дороже домашняя солнечная электростанция, то о ее видах расскажем подробнее.

Системы электроснабжения с солнечными панелями на крыше дома бывают трех видов:

  1. Автономные — дорого, но без забот. В этом случае дом получает электроэнергию только от солнечных батарей и, возможно, бензинового или дизельного генератора. Для работы системы необходимы аккумуляторы и немало: их емкости должно быть достаточно, чтобы обеспечить бесперебойное электроснабжение в темное время суток.
  2. Соединенные с сетью — бюджетно и просто. В такой системе недостаток энергии компенсируется от общей электросети, в нее же отдаются излишки в пиковое время выработки. В этом случае не нужны аккумуляторы, а на отданной энергии можно даже заработать. Но при перебоях в электроснабжении солнечные батареи работать также не будут.
  3. Гибридные — оптимум для больших домов. Эти системы оснащают аккумуляторами, но после их полной зарядки в пиковое время не отключают панели, а передают электроэнергию с них в сеть. Также от сети можно компенсировать недостаток электроэнергии, в том числе и зарядить аккумуляторы.

Аккумуляторные батареи стоят дорого, к тому же их нужно менять раз в 3-8 лет в зависимости от типа аккумулятора и режима использования. Поэтому их наличие сильно удорожает систему.  Если брать средние числа, то:

Автономная система на 1 кВт*ч/сутки будет стоить 120-140 тысяч рублей, а при мощности в 5 кВт*ч/сутки ее цена увеличится в два раза — до 280 тысяч рублей

На этом примере видно, что для оценки порядка цен неважно, сколько стоит солнечная батарея на крышу конкретного производителя. Нужна только информация о стандартной цене 1 Вт энергии, которая примерно равна 60-65 рублей

Тип солнечных батарей, их производитель, марка инвертора и контроллера, конечно, влияют на цену, но дают ее изменение на десятки процентов, а не в разы или на порядок.
Соединенная с сетью система на 1 кВт*ч/сутки будет стоить 30-35 тысяч рублей, а при мощности в 5 кВт*ч/сутки ее цена увеличится до 70-80 тысяч рублей.
Гибридная система стоит на 10-15% дороже автономной аналогичной мощности за счет большей сложности монтажа.

При расчете стоимости установки солнечных батарей смотрите цену 1 кВт полностью готовой системы с установкой и без нее. Так вы сможете быстро сравнить предложения разных компаний между собой и выбрать самое выгодное.

Основные преимущества

Тонкопленочные солнечные батареи

Этот вид солнечных панелей тонкопленочных имеет много отличий от аналогов кристаллических:

  • малая толщина, не превышающая 1 микрона;
  • отличная гибкость, позволяющая монтаж панели производить на всевозможные криволинейные поверхности, включая цилиндрические;
  • сохранение параметров в рассеянном свете, что позволят увеличить общую выработку электроэнергии, в сравнении с поли- и монокристаллическими панелями, на 10, а в отдельных случаях на 15 процентов;
  • небольшая себестоимость производственного процесса, следовательно, и невысокая стоимость готового изделия;
  • высокоэффективное функционирование в энергосистемах мощностью более 10 кВт и в условиях высоких температур;
  • значительные показатели оптического поглощения солнечного спектра, превышающий кристаллический более, чем в 20 раз;
  • стабильность мощности выходной продолжительное время- надежность;
  • безвредность для окружающей среды, поскольку в них низкая доля использования кремния – 1/000 от применяемого в кристаллических аналогах;
  • короткий период окупаемости за счет большой энергоотдачи;
  • небольшой вес, упрощающий монтаж;
  • ударопрочность. При монтаже нередки падения, но пленка остается работоспособной.
Популярные статьи  Вакуумные выключатели

Плюсы и минусы

Энергия солнца относится к альтернативным, возобновляемым источникам, ее использование считается прогрессивным способом энергопотребления. Ее преимущества описывают следующим образом:

  • Ваши ежемесячные платежи за электроэнергию снижаются (а в идеале исчезают). Степень экономии зависит от размеров установленной системы и объема потребления.
  • Если монтаж системы производится на собственном участке, вам не надо получать разрешение на установку оборудования.
  • Существует возможность заработать, если вы будете производить электроэнергии столько, что сможете продавать ее государству.
  • Затраты на обслуживание остаются весьма низкими.
  • Небольшой вес, беспроблемная эксплуатация, отсутствие шума.
  • Солнечная энергетика – динамическая отрасль, и эффективность солнечных панелей постоянно повышается. Современные модели могут работать даже при сплошной облачности (выработка при этом снижается).

Люди, скептически относящиеся к установке солнечных батарей, оперируют следующими фактами:

  • Панели требуют вложения средств, им нужно пространство для установки, а КПД достаточно низкий даже у лучших моделей.
  • Панели могут служить источником энергии лишь днем. Чтобы пользоваться дарами зеленой энергетики круглые сутки, необходим аккумулятор – буферное накопительное устройство, а также инвертор (прибор для преобразования постоянного тока в переменный). «Бесплатную энергию от природы» трудно назвать дешевой.
  • Зеленая технология вредит природе не хуже традиционного сжигания любого топлива. Стоит вспомнить особенности производства и, особенно, утилизации панелей и аккумуляторов. Ее экологичность под большим вопросом.
  • Такой источник энергии трудно назвать независимым. Вы не имеете точек пересечения с государственными сетями, но не сможете обойтись без компаний, занимающихся обслуживанием, ремонтом систем, продажей комплектующих.
  • Не всегда можно выйти на окупаемость системы, чаще технология оказывается убыточной. Дело в невнимательном подборе панелей, низкой производительности, неподходящих климатических условиях.

Недостатки тонкопленочных солнечных панелей

Существует, по меньшей мере, три типа тонкопленочных технологий. У каждой из них своя производительность. Поэтому, читая следующий список недостатков тонкопленочных элементов, имейте в виду, что существуют различия в зависимости от типа технологии и даже от конкретных производителей солнечных панелей.

  1. Это причина, почему тонкопленочные солнечные панели до сих пор не могут заменить устаревшие типы. Они просто не так эффективны. Кроме того, некоторые тонкопленочные материалы показали снижение производительности с течением времени, а стабилизированная эффективность может быть на 15-35% ниже начальных значений.

  2. С КПД примерно от 7 до 10 процентов тонкопленочные солнечные элементы могут обеспечить только около половины мощности по сравнению с моно- и поликристаллическими панелями. Это требует в два раза больше пространства для получения такого же количества электроэнергии. Хотя стоимость панелей, на долю которых приходится около 50% от общей стоимости установки системы солнечных батарей, снижается в результате более эффективного производства и эффекта масштаба — затраты на монтаж остались примерно те же самые. Следовательно, если вам нужно установить в два раза больше панелей, чтобы получить те же результаты – преимущество более низкой цены панелей быстро исчезает. Вот факты: Земля имеет ограниченное количество площадей. 20 МВт солнечная электростанция на основе кремниевых солнечных панелей с фотоэлементами высокой эффективности может быть расположена на участке 8 гектар или даже меньше, если использовать технологии концентрации солнечного света. Для расположения электростанции такой же мощности на основе тонкопленочных панелей понадобится от 16 до 24 гектар земли в зависимости от технологии. Это основное различие использования земли для получения одних и тех же результатов.

  3. Вы должны знать, что есть вероятность того, что тонкопленочные панели будут эффективно работать так же долго, как моно- или поликристаллические панели. Но эта технология относительно новая и до сих пор она не была хорошо проверена. Есть опасения, что может возникнуть более быстрое уменьшение производительности с течением времени, чем в других типах солнечных панелей.

  4. Теллур, будучи довольно распространенным химическим элементом во Вселенной, очень редкий элемент на Земле. Даниэль Каммен, директор лаборатории возобновляемых источников энергии калифорнийского университета в Беркли, говорит, что наличие теллура может ограничить применение тонкопленочных панелей для выработки электроэнергии из-за дефицита элемента. По данным исследования, в то время как общемировой спрос на электроэнергию, скорее всего, достигнет десятков тераватт (триллионов ватт) в ближайшие десятилетия, тонкопленочные солнечные элементы, вероятно, будут ограниченно производить всего около 0,3 тераватт электроэнергии.

  5. Технологии производства тонкопленочных солнечных панелей с использованием теллурида кадмия и диселенида галлия-индия-меди (CIGS) предусматривают использование кадмия, который классифицируется как одно из 6 самых токсичных веществ. В то время как использование теллурида кадмия на крыше жилого дома не представляет собой значительного риска — есть некоторая озабоченность по поводу крупномасштабных проектов, а также долгосрочного эффекта. Власти в Европе в настоящее время задумываются над возможностью принятия более жестких требований, касающиеся продуктов, содержащих кадмий. Эти положения могут оказать влияние на продажи тонкопленочных солнечных панелей в Европе.

  • < Назад
  • Вперёд >

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Источники

  • https://itc.ua/articles/solnechnyie-batarei-kak-eto-rabotaet/
  • https://m-strana.ru/articles/printsip-raboty-solnechnoy-batarei/
  • https://principraboty.ru/princip-raboty-solnechnoy-batarei-chto-takoe-solnechnaya-batareya/
  • https://sovet-ingenera.com/eco-energy/sun/princip-raboty-solnechnoj-batarei.html
  • https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D0%B5%D1%87%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B0%D1%82%D0%B0%D1%80%D0%B5%D1%8F
  • https://zen.yandex.ru/media/ecoenergetics/solnechnye-batarei-dlia-dachi-i-doma-princip-raboty-i-podbor-komplektuiuscih-5c84d728c92daf00b409f246
Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: