Характеристики и пусковые свойства синхронных двигателей

Модели независимого возбуждения

Моторы ПТ НВ обладают обмоточным возбуждением, подключаемым к отдельному виду источника для электрического питания. В таком случае обмоточная цепь возбуждения ДПТ НВ дополняется реостатом регулировочного типа, а якорная цепь снабжается добавочными или пусковыми реостатными элементами.

Отличительной особенностью такого вида мотора является независимость токового возбуждения от якорного тока, что обуславливается независимым питанием обмоточного возбуждения.

Характеристики и пусковые свойства синхронных двигателей
Характеристики электродвигателей с независимым и параллельным возбуждением

Линейная механическая характеристика при независимом типе возбуждения:

  • ω — показатели вращательной частоты;
  • U — показатели напряжения на эксплуатируемой якорной цепи;
  • Ф — параметры магнитного потока;
  • Rя и Rд — уровень якорного и добавочного сопротивления;
  • Α — константа конструкции движка.

Данным типом уравнения определяется зависимость вращательной скорости мотора к моменту вала.

Определение и принцип действия

Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.

Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.

Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.

Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).

Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:

N=60f/p

f – частота тока в обмотке, Гц, p – количество пар полюсов.

Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.

Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.

Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.

Характеристики и пусковые свойства синхронных двигателей

Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.

Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.

Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).

Характеристики и пусковые свойства синхронных двигателей

Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).

Ниже вы видите условное обозначение на схеме синхронной машины.

Характеристики и пусковые свойства синхронных двигателей

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.
Популярные статьи  Трансформаторы тока - принцип работы и применение

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Характеристики и пусковые свойства синхронных двигателей

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Характеристики и пусковые свойства синхронных двигателей

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Характеристики и пусковые свойства синхронных двигателей

Принцип работы

Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

Характеристики и пусковые свойства синхронных двигателей

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Характеристики и пусковые свойства синхронных двигателей
Как подключить электродвигатель 380В на 220В

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Плюсы:

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.

Минусы:

  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

Характеристики и пусковые свойства синхронных двигателейСД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Принцип работы реактивного двигателя

Переменный ток, проходящий по обмоткам статора, создает в воздушном зазоре электродвигателя. создается, когда ротор пытается установить свою наиболее магнито проводящую ось (d-ось) с приложенным полем, для того чтобы минимизировать магнитное сопротивление в магнитной цепи. Амплитуда момента прямо пропорциональна разницы между продольной Ld и поперечной Lq индуктивностями. Следовательно, чем больше разница, тем больше создаваемый момент.

Характеристики и пусковые свойства синхронных двигателей
Линии магнитного поля синхронного реактивного электродвигателя

Главная идея может быть объяснена с помощью рисунка представленного ниже. Объект «a» состоящий из анизотропного материала имеет разную проводимость по оси d и оси q, в то время как изотропный магнитный материал объекта «b» имеет одинаковую проводимость во всех направлениях. Магнитное поле, которое прикладывается к анизотропному объекту «a», создает вращающий момент если существует угол между осью d и линиями магнитного поля. Очевидно, что если ось d объекта «a» не совпадает с линиями магнитного поля, объект будет вносить искажения в магнитное поле. При этом направление искаженных магнитных линий будут совпадать с осью q объекта.

Популярные статьи  Почему после замены спотов с 50 Вт на 75 Вт все моргает и сильно греется?

Характеристики и пусковые свойства синхронных двигателей
Объект с анизотропной геометрией (a) и изотропной геометрией (b) в магнитном поле

Характеристики и пусковые свойства синхронных двигателей
Силовые линии магнитного поля вокруг объекта с анизотропной геометрией

В синхронном реактивном электродвигателе магнитное поле создается синусоидально распределенной обмоткой статора. Поле вращается с синхронной скоростью и может считаться синусоидальным.

В такой ситуации всегда будет существовать момент направленный на то, чтобы уменьшить полную потенциальную энергию системы, путем уменьшения искажения поля по оси q (). Если угол сохранять постоянным, например путем контроля магнитного поля, тогда электромагнитная энергия будет непрерывно преобразовываться в механическую.

Ток статора отвечает за намагничивание и за создание момента, который пытается уменьшить искаженность поля. Управление моментом осуществляется путем контроля фазы тока, то есть угла между вектором тока обмоток статора и d-осью ротора во вращающейся системе координат.

Характеристики синхронного электродвигателя

Хотя асинхронные двигатели считаются более надежными и дешевыми, их синхронные «собратья» имеют некоторые преимущества и широко применяются в различных областях промышленности. К отличительным характеристикам синхронного электродвигателя можно отнести:

  • Работу при высоком значении коэффициента мощности.
  • Высокий КПД по сравнению с асинхронным устройством той же мощности.
  • Сохранение нагрузочной способности даже при снижении напряжения в сети.
  • Неизменность частоты вращения независимо от механической нагрузки на валу.
  • Экономичность.

Синхронным двигателям также присущи некоторые недостатки:

  • Достаточно сложная конструкция, делающая их производство дороже.
  • Необходимость источника постоянного тока (возбудителя или выпрямителя).
  • Сложность пуска.
  • Необходимость корректировать угловую частоту вращения путем изменения частоты питающего напряжения.

Однако в некоторых случаях использование синхронных двигателей предпочтительнее:

  • Для улучшения коэффициента мощности.
  • В длительных технологических процессах, где нет необходимости в частых запусках и остановках.

Таким образом, «плюсы» двигателей такого типа значительно превосходят «минусы», поэтому на данный момент они высоко востребованы.

Изучив синхронный двигатель, устройство и принцип его действия и учтя условия, в которых он будет эксплуатироваться, вы сможете быстро и с легкостью подобрать оптимально подходящий для ваших целей тип агрегата (защищенный, закрытый, открытый) и использовать его с максимальной эффективностью.

Источник

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Занятие 38. Пусковые характеристики асинхронного двигателя

График зависимости М = f (s) называется пусковой характеристикой двигателя.

Характеристики и пусковые свойства синхронных двигателей

Изменяя значение скольжения от s = 0 до s = 1 и, находя по приведенной формуле значение момента можно пусковую характеристику.

Для устойчивой работы двигателя важно, чтобы автоматически устанавливалось равновесие вращающего и тормозящего моментов: с увеличением нагрузки на валу двигателя должен соответственно возрастать и вращающий момент. Это уравновешивание у работающего асинхронного двигателя осуществляется следующим образом:

Это уравновешивание у работающего асинхронного двигателя осуществляется следующим образом:

при увеличении нагрузки на валу тормозящий момент оказывается больше вращающего, вследствие чего скорость вращения ротора уменьшается – скольжение возрастает.

Повышение скольжения вызывает увеличение вращающего момента, и равновесие моментов восстанавливается при возросшем скольжении.

Однако зависимость вращающего момента от скольжения сложна. В частности, повышение скольжения вызывает увеличение вращающего момента только при изменении скольжения в определенных пределах. За этими пределами нарушенное равновесие моментов не восстанавливается – двигатель останавливается.

На пусковой характеристике имеются три характерных точки, определяющих условия работы двигателя. (А,Б,В)

В точке А двигатель работает устойчиво. Если двигатель под влиянием какой-либо причины уменьшит частоту вращения, то скольжение его возрастет, вместе с ним возрастет вращающий момент. Благодаря этому частота вращения двигателя повысится, и вновь восстановится равновесие электромагнитного и противодействующего моментов Мэм = М2;. В точке Б работа двигателя не может быть устойчива: случайное отклонение частоты вращения приведет либо к остановке двигателя, либо к переходу его в точку А. Следовательно, вся восходящая ветвь характеристики является областью устойчивой работы двигателя, а вся нисходящая часть — областью неустойчивой работы.

Точка Б, соответствующая максимальному моменту, разделяет области устойчивой и неустойчивой работы. Максимальному значению вращающего момента соответствует критическое скольжение Sk. Скольжению S = 1 соответствует пусковой момент. Если величина противодействующего тормозного момента М2больше пускового МП, двигатель при включении не запустится, останется неподвижным.

Популярные статьи  Нагревание кабелей с бумажной изоляцией при длительном протекании тока

Характеристики и пусковые свойства синхронных двигателей

Рис.38.1. Пусковая характеристика асинхронного двигателя.

Для целей электропривода большое значение имеет зависимость скорости

вращения двигателя от нагрузки на валу n=F(M);

эта зависимость носит назва-

ние механической характеристики(рис.38.2).

По форме своей она отличается от кривой M=F(s)

только положением по отношению к координатным осям.

Рис. 38.2. Механическая характеристика асинхронного двигателя

Источник

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Синхронные двигатели: устройство и принцип действия

Основные части синхронного двигателя – это якорь (статор, неподвижная часть) и индуктор (ротор), разделенные воздушной прослойкой. В пазы статора закладывают трехфазную распределенную обмотку – обычно она соединяется «звездой».

Рис. 2 Схема синхронного двигателя

С началом работы двигателя тока, подаваемые в якорь, создают вращение магнитного поля, которое пересекает поле индуктора, что в результате взаимодействия двух полей переходит в энергию. Поле якоря чаще называют иначе – поле реакции якоря. В генераторах такое получают при помощи индуктора. Входящие в состав индуктора электромагниты постоянного тока принято называть полюсами. При этом индукторы во всех синхронных двигателях могут исполняться по двум схемам – явнополюсной и неявнополюсной, различающиеся между собой расположением полюсов. Чтобы уменьшить значение магнитного сопротивления и тем самым улучшить условия для прохождения магнитного потока, применяют ферромагнитные сердечники. Они располагаются в статоре и роторе, для их изготовления используют специальную марку стали – электротехническую, отличающую высоким содержанием кремния – это позволяет уменьшить вихревые токи и повысить электрическое сопротивление стали.

Рис. 3. Магнитные поля в синхронном двигателе

В основу работы синхронного двигателя положен принцип взаимного влияния полюсов индуктора и магнитного поля, индуцируемого якорем. При запуске осуществляется разгон двигателя до частоты, которая близка по своему значению частоте, с которой происходит в зазоре вращение магнитного поля. Только при выполнении этого условия двигатель переходит в функционирование в синхронном режиме. В данный момент пересекаются магнитные поля, инициируемые индуктором и ротором. Этот момент в технической литературе принято называть входом в синхронизацию.

Работа синхронного двигателя наглядно представлена на видео:

Длительное время в качестве разгонного двигателя использовался стандартный синхронный двигатель, который был механически соединен с синхронным. Благодаря этому, ротор на синхронном двигателе механически разгонялся до подсинхронной скорости, а затем уже самостоятельно, за счет взаимодействия электромагнитных полей, втягивался в синхронизм. Обычно при подборе мощности пускового двигателя исходили из соотношения 10-15% от номинальной мощности разгоняемого двигателя. Такого запаса мощности вполне хватало запустить синхронный двигатель не только в холостую, но даже и при незначительной нагрузке на валу.

Рис. 4 Синхронный двигатель (1) с внешним разгонным (2) двигателем

Такой способ разгона усложняет и существенно удорожает общую стоимость, поэтому в современных двигателях от него отказались в пользу разгона в состоянии асинхронного режима. В этом случае с помощью реостата (короткозамкнутым путем) обмотки индуктора замыкают, как в асинхронном двигателе. Чтобы провести запуск двигателя в таком режиме, на ротор устанавливают короткозамкнутую обмотку, выступающую одновременно и как успокоительная обмотка, устраняющая во время проведения синхронизации раскачивание ротора. В момент, когда скорость вращения достигнет требуемого номинального значения, в индуктор будет подан постоянный ток. Но для двигателей, в которых стоят постоянные магниты, все равно придется для разгона использовать внешние двигатели.

В криогенных синхронных машинах используется так называемая обращенная конструкция, при которой размещение индуктора и якоря выполнено наоборот, т.е. индуктор расположен на статоре, а якорь – на роторе. В таких машинах обмотки возбуждения состоят из материалов, обладающими свойствами сверхпроводимости.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: