Как зависит сопротивление от температуры

Структура термометров сопротивления

  1. Высокие номинальные сопротивления. Тонкопленочная технология позволяет производить датчики с R0=1000 Ом той же ценой, что и датчики с номинальным сопротивлением 50, 100 или 500 Ом. К тому же, изготавливаются датчики и с более высоким номинальным сопротивлением, например 2000 и 10000 Ом.
  2. Малый размер. Тонкопленочный датчик можно сделать гораздо более миниатюрным по сравнению с намоточным. Стандартный датчик Pt1000, например, может иметь габариты всего 1.6 x 1.2 мм.
  3. Прямоугольная форма и миниатюрный размер пленочных датчиков позволяют выпускать не только выводные термосопротивления, но и SMD-компоненты стандартных размеров — 1206, 0805 и так далее.

UPD:опубликована

Газы

Газы выполняют роль диэлектрика и не могут проводить электроток. А для того чтобы он сформировался необходимы носители зарядов. В их роли выступают ионы, и они возникают за счет влияния внешних факторов.

Зависимость можно рассмотреть на примере. Для опыта используется такая же конструкция, что и в предыдущем опыте, только проводники заменяются металлическими пластинами. Между ними должно быть небольшое пространство. Амперметр должен указывать на отсутствие тока. При помещении горелки между пластинами, прибор укажет ток, который проходит через газовую среду.

Ниже предоставлен график вольт-амперной характеристики газового разряда, где видно, что рост ионизации на первоначальном этапе возрастает, затем зависимость тока от напряжения остается неизменная (то есть при росте напряжения ток остается прежний) и резкий рост силы тока, который приводит к пробою диэлектрического слоя.

Рассмотрим проводимость газов на практике. Прохождение электрического тока в газах применяется в люминесцентных светильниках и лампах. В этом случае катод и анод, два электрода размещают в колбе, внутри которой есть инертный газ. Как зависит такое явление от газа? Когда лампа включается, две нити накала разогреваются, и создается термоэлектронная эмиссия. Внутри колба покрывается люминофором, который излучает свет, который мы видим. Как зависит ртуть от люминофора? Пары ртути при бомбардировании их электронами образуют инфракрасное излучение, которое в свою очередь излучает свет.

Если приложить напряжение между катодом и анодом, то возникает проводимость газов.

Платиновые измерители температуры

Несмотря на сравнительно высокую стоимость, достаточно часто производители применяют именно этот материал. Почему выбирают это решение, понятно из перечня следующих преимуществ:

  • использование платины позволяет получить линейный график зависимости удельного сопротивления от температуры;
  • температурный коэффициент серийных (эталонных) изделий составляет 0,00385 (0,003925) °C-1;
  • рабочий диапазон в °C – от -196 до +600.

Упомянутый в списке температурный коэффициент (Тк) рассчитывают по формуле:

Тк = (Rи – Rб)/((Ти – Тб) * 1/Rб),

где:

  • Rи (Rб) – измеренное (базовое) сопротивление;
  • Ти (Тб) – соответствующие значения температуры.

Из выражения понятно, что уменьшение коэффициента сопровождается увеличением точности. Базовое электрическое сопротивление определяют при T=0°C.

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

Как зависит сопротивление от температуры

где:

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Зависимость указывается и обосновывается формулами:

Из этих формул следует, что R проводника определяется по формуле:

Пример зависимости сопротивления металлов от температуры предоставлен на видео:

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление

График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Как зависит сопротивление от температуры

Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.

Формула как найти

Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину

Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз

Как зависит сопротивление от температуры
Главная формула расчета

Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.

Как зависит сопротивление от температуры
Закон ома в дифференциальной форме

Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.

Вам это будет интересно Ручные пресс клещи

Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты

Они показаны ниже в схеме.

Как зависит сопротивление от температуры
Связь с проводимостью, выраженная в физических соотношениях

Металлы

Как температура влияет на металлы? Чтобы узнать эту зависимость был проведен такой эксперимент: батарейку, амперметр, проволоку и горелку соединяют между собой с помощью проводов. Затем необходимо замерить показание тока в цепи. После того как показания были сняты, нужно горелку поднести к проволоке и нагреть ее. При нагревании проволоки видно, что сопротивление возрастает, а проводимость металла уменьшается.

  1. Металлическая проволока
  2. Батарея
  3. Амперметр

Зависимость указывается и обосновывается формулами:

Из этих формул следует, что R проводника определяется по формуле:

Пример зависимости сопротивления металлов от температуры предоставлен на видео:

Также нужно уделить внимание такому свойству, как сверхпроводимость. Если условия окружающей среды обычные, то охлаждаясь, проводники уменьшают свое сопротивление

График ниже показывает, как зависит температура и удельное сопротивление в ртути.

Сверхпроводимость – это явление, которое возникает, когда материалом достигается критическая температура (по Кельвину ближе к нулю), при которой сопротивление резко уменьшается до нуля.

Попробуем разобраться, почему увеличивается сопротивление

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.

Сопротив­ление металлов связано с тем, что электроны, движущиеся в провод­нике, взаимодействуют с ионами кристаллической решетки и теряют при этом часть энергии, которую они приобретают в электрическом поле.

Опыт показывает, что сопротив­ление металлов зави­сит от температуры. Каждое вещество можно харак­теризовать постоянной для него вели­чиной, называемой температурным коэффициентом сопротивления α
.
Этот коэффициент равен относитель­ному изменению удельного сопро­тивления проводника при его нагре­вании на 1 К: α =

где ρ 0 — удельное сопротивление при температуре T 0 = 273 К (0°С), ρ — удельное сопротивление при данной температуре T. Отсюда зависимость удельного сопротивления металли­ческого проводника от температуры выражается линейной функцией: ρ = ρ 0 (1+ αT).

Популярные статьи  Как подключить бесконтактный датчик AR-G18-3C5PC?

Зависимость сопротивления от температуры выражается такой же функцией:

R = R 0 (1+ αT).

Температурные коэффициенты со­противления чистых металлов срав­нительно мало отличаются друготдруга и примерно равны 0,004 K -1 . Изменение сопротивления про­водников при изменении температу­ры приводит к тому, что их вольт-амперная характеристика не линейна. Это особенно заметно в тех слу­чаях, когда температура проводни­ков значительно изменяется, напри­мер при работе лампы накаливания. На рисунке приведена ее вольт — амперная характеристика. Как видно из рисунка, сила тока в этом случае не прямо пропорциональна напря­жению. Не следует, однако, думать, что этот вывод противоречит закону Ома. Зависимость, сформулированная в законе Ома, справедлива только при постоян­ном сопротивлении.
Зависимость сопротивления ме­таллических проводников от темпе­ратуры используют в различных из­мерительных и автоматических уст­ройствах. Наиболее важным из них является термометр сопротивления
. Основной частью термометра со­противления служит платиновая про­волока, намотанная на керамиче­ский каркас. Проволоку помещают в среду, температуру кото­рой нужно определить. Измеряя со­противление этой проволоки и зная ее сопротивление при t 0 = 0 °С (т. е. R 0),
рассчитывают по последней формуле температуру среды.

Сверхпроводимость.
Однако до конца XIX в. нельзя было прове­рить, как зависит сопротивление про­водников от температуры в области очень низких температур. Только в начале XX в. голландскому учено­му Г. Камерлинг-Оннесу удалось пре­вратить в жидкое состояние наибо­лее трудно конденсируемый газ — гелий. Температура кипения жидкого гелия равна 4,2 К. Это и дало воз­можность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой темпе­ратуры.

В 1911г работа Камерлинг-Оннеса завершилась крупнейшим откры­тием. Исследуя сопротивление рту­ти при ее постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. В даль­нейшем ему удалось это же явление наблюдать и у ряда других метал­лов при их охлаждении до темпе­ратур, близких к абсолютному нулю. Явление полной потери металлом электрического сопротивления при определенной температуре получило название сверхпроводимости.

Не все материалы могут стать сверхпроводниками, но их число до­статочно велико. Однако у многих из них было обнаружено свойство, которое значительно препятствовало их применению. Выяснилось, что у большинства чистых металлов сверхпроводимость исчезает, когда они находятся в силь­ном магнитном поле. Поэтому, когда по сверх­проводнику течет значительный ток, он создает вокруг себя магнитное поле и сверхпроводимость в нем исчезает. Всё же это препятствие оказалось преодолимым: было выяснено, что не­которые сплавы, например ниобия и циркония, ниобия и титана и др., обладают свойством сохранять свою сверхпроводимость при больших значениях силы тока. Это позволило более широко использовать сверх­проводимость.

Зависимость сопротивления проводника от температуры

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

Как зависит сопротивление от температуры

где ρ и ρ0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α — температурный коэффициент сопротивления, = град-1.

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Как зависит сопротивление от температуры

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления — α <0.

Как зависит сопротивление от температуры

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

Как зависит сопротивление от температуры

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

Похожие материалы:

  • Резисторы. Виды резисторов
  • Типы резисторов
  • Обозначение резисторов на схемах
  • Соединение резисторов
  • Зависимость электрического сопротивления от сечения, длины и материала проводника

Удельное электрическое сопротивление некоторых веществ[ | ]

Металлические монокристаллы

В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C.

Кристалл ρ1=ρ2, 10−8 Ом·м ρ3, 10−8 Ом·м
Олово 9,9 14,3
Висмут 109 138
Кадмий 6,8 8,3
Цинк 5,91 6,13
Теллур 2,90·109 5,9·109

Металлы и сплавы, применяемые в электротехнике

Разброс значений обусловлен разной химической чистотой металлов, способами изготовления образцов, изученных разными учеными, и непостоянством состава сплавов.

0,015…0,0162
Медь 0,01707…0,018
Медь 6N Cu 99.9999% 0,01673
Золото 0,023
Алюминий 0,0262…0,0295
Иридий 0,0474
Молибден 0,054
Вольфрам 0,053…0,055
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,217…0,227
Титан 0,5562…0,7837
Висмут 1,2
Никелин 0,42
Константан 0,5
Манганин 0,43…0,51
Нихром 1,05…1,4
Фехраль 1,15…1,35
Хромаль 1,3…1,5
Латунь 0,025…0,108
Бронза 0,095…0,1

Значения даны при температуре t

= 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.

Как зависит сопротивление проводника от температуры?

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры; изменяется их концентрация при нагревании проводника.

143. Как рассчитать сопротивление проводника, зная площадь его сечения и длину?

144. Какой металл обладает наиболее высокой удельной проводимостью: алюминий, медь, железо или вольфрам?

145. Какой металл имеет наименьшую массу при одном и том же объеме: алюминий, медь, железо или вольфрам?

146. Какой металл имеет наиболее высокую температуру плавления: алюминий, медь, железо или вольфрам?

147. Для проводов высоковольтных ЛЭП применяют композиционный материал на основе: стали и вольфрама, стали и меди, стали и серебра или стали и алюминия?

148. Почему медь не рекомендуется соединять с алюминием?

Какой металл используют для изготовления нитей накаливания в лампах накаливания?

Вольфрам

Что такое явление сверхпроводимости, и каковы условия ее возникновения?

явление резкого снижения удельного электрического сопротивления, практически до нуля, при весьма низких температурах.

Популярные статьи  Электростатика в картинках

151. Как взаимодействуют сверхпроводники с магнитным полем?

Что такое манганин?

сплав меди, марганца и никеля, характеризуется низким температурным коэффициентом сопротивления и применяется для изготовления резисторов.

Что такое константан?

термостабильный сплав на основе с добавкой никеля и марганца

Что такое нихром?

сплав, состоящий из 55—78% никеля, 15—23% хрома, 1,5% марганца, остальное — железо.

Что такое хромаль?

группа жаростойких сплавов на основе железа, содержащих 17—30% Cr и 4,5—6,0% Al. Сплавы характеризуются редким сочетанием высокой жаростойкости (до 1400 °С) и высокого удельного электрического сопротивления

Что такое диамагнетики?

вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент, а каждая единица объёма — намагниченность, пропорциональный магнитной индукции и направленный навстречу полю. Поэтому магнитная восприимчивость = M/H у диамагнетиков всегда отрицательна.

Что такое парамагнетики?

Что такое ферромагнетики?

вещество или материал, в котором наблюдается явление ферромагнетизма, т. е. появление спонтанной намагниченности при температуре ниже температуры Кюри.

Типичная кривая магнитного гистерезиса ферромагнетика. По оси ординат — намагниченность M , по оси абсцисс — напряженность магнитного поляH .Ms — намагниченность насыщения,Mr — остаточная намагниченность,Hc — коэрцитивная сила.

159. В чем физическая сущность относительной магнитной проницаемости?

Что такое магнитные домены?

макроскопические области, в которых электронные спины ориентированы взаимно параллельно.

161. Что такое магнитный гистерезис?

Термины

  • Полупроводник – вещество с электрическими свойствами, которые характеризируют его как хорошего проводника или изолятора.
  • Температурный коэффициент удельного сопротивления – эмпирическая величина (α), описывающая изменение сопротивления или удельного сопротивления с температурным показателем.
  • Удельное сопротивление – степень, с которой материал сопротивляется электрическому потоку.

Сопротивление материалов основывается на температуре, поэтому получается проследить зависимость удельного сопротивления от температуры. Некоторые способны стать сверхпроводниками (нулевое сопротивление) при очень низких температурах, а другие – при высоких. Скорость вибрации атомов повышается на больших дистанциях, поэтому перемещающиеся сквозь металл электроны чаще сталкиваются и повышают сопротивление. Удельное сопротивление меняется с изменением температуры ΔT:

Как зависит сопротивление от температуры

Сопротивление конкретного образца ртути достигает нуля при крайне низком температурном показателе (4.2 К). Если показатель выше этой отметки, то наблюдается внезапный скачек сопротивления, а далее практически линейный рост с температурой

p = p (1 + αΔT), где ρ – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления. При серьезных переменах температуры α способно меняться, а для поиска p возможно потребуется нелинейное уравнение. Именно поэтому иногда оставляют суффикс температуры, при которой изменилось вещество (к примеру, α15).

Стоит отметить, что α положительно для металлов, а удельное сопротивление растет вместе с температурным показателем. Обычно температурный коэффициент составляет +3 × 10-3 К-1 до +6 × 10-3 К-1 для металлов с примерно комнатной температурой. Есть сплавы, которые разрабатывают специально, чтобы снизить зависимость от температуры. Например, у манганина α приближено к нулю.

Не забывайте также, что α выступает отрицательным для полупроводников, то есть, их удельное сопротивление уменьшается с ростом температурной отметки. Это отличные проводники при высоких температурах, потому что повышенное температурное смешивание увеличивает количество свободных зарядов, доступных для транспортировки тока.

Сопротивление объекта также основывается на температуре, так как R располагается в прямой пропорциональности p. Мы знаем, что для цилиндра R = ρL/A. Если L и A сильно не изменяются с температурой, то R обладает одинаковой температурной зависимостью с ρ. Выходит:

R = R (1 + αΔT), где R – исходное сопротивление, а R – сопротивление после изменения температуры T.

Давайте рассмотрим сопротивление датчика температуры. Очень многие термометры функционируют по этой схеме. Наиболее распространенный пример – термистор. Это полупроводниковый кристалл с сильной зависимостью от температуры. Устройство небольшое, поэтому быстро переходит в тепловой баланс с человеческой частью, к которой прикасается.

Как зависит сопротивление от температуры

Термометры основаны на автоматическом измерении температурного сопротивления термистора

Обзор

Электрический ток

Батарея
Измерения тока и напряжения в цепях
Микроскопический вид: скорость дрейфа

Сопротивление и резисторы

Закон Ома
Температура и сверхпроводимость
Сопротивление и удельное сопротивление
Зависимость сопротивления от температуры

Электрическая энергия и энергия

Переменные токи

Фазоры
Средниеквадратное значение корня
Меры предосторожности в домашнем хозяйстве

Электричество в мире

Люди и электрическая опасность
Проводимость нервов и электрокардиограммы
Электрическая активность в сердце

Виды термодатчиков

Выше представлены типичные реакции металла при увеличении/ уменьшении температуры. Чувствительный элемент создают с определенным электрическим сопротивлением по аналогии с методикой изготовления проволочного (пленочного резистора). Для расширения температурного диапазона и улучшения сопротивляемости реакциям окисления применяют платину. Модификации из меди (никеля) стоят дешевле, но отличаются худшими рабочими характеристиками. Изделие помещают в корпус, выполняющий защитные функции. Специальным наполнителем обеспечивают фиксацию датчика и хорошую теплопередачу.

Также применяют полупроводниковые датчики, собранные по аналогичной схеме. В этом варианте электрическое сопротивление уменьшается при увеличении температуры. Как правило, используют герметичный корпус с наполнением инертным газом. Слоем изоляции предотвращают электрический контакт компонентов конструкции. Специальные выводы предназначены для подключения устройства к внешним линиям.

Любой вид измерителя (полупроводник или металлический аналог) оценивают по следующим параметрам:

  • класс точности;
  • температурный диапазон, в котором поддерживается допустимое отклонение по установленным нормативам;
  • мощность потребления;
  • размеры, масса;
  • защищенность от электромагнитных колебаний и других внешних воздействий.

К сведению. Основные рабочие параметры определяет зависимость сопротивления от температуры. Существенное значение имеет выбор материала. Проводимость может уменьшаться или увеличиваться при нагреве.

Металлический термометр сопротивления

Представляет собой резистор, изготовленный из металлической проволоки или металлической плёнки на диэлектрической подложке и имеющий известную зависимость электрического сопротивления от температуры.

Наиболее точный и распространённый тип термометров сопротивления — платиновые термометры. Это обусловлено тем, что платина имеет стабильную и хорошо изученную зависимость сопротивления от температуры и не окисляется в воздушной среде, что обеспечивает их высокую точность и воспроизводимость. Эталонные термометры изготавливаются из платины высокой чистоты с температурным коэффициентом 0,003925 1/К при 0 °C.

В качестве рабочих средств измерений применяются также медные и никелевые термометры сопротивления. Технические требования к рабочим термометрам сопротивления изложены в стандарте ГОСТ 6651-2009 (Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний). В стандарте приведены диапазоны, классы допуска, таблицы номинальных статических характеристик (НСХ) и стандартные зависимости сопротивление-температура. ГОСТ 6651-2009 соответствует международному стандарту МЭК 60751 (2008). В этих стандартах, в отличие от ранее действующих стандартов не нормированы номинальные сопротивления при нормальных условиях. Начальное сопротивление изготовленного термосопротивления может быть произвольным с некоторым допуском.

Промышленные платиновые термометры сопротивления в большинстве случаев считаются имеющими стандартную зависимость сопротивление-температура (НСХ), что обеспечивает погрешность не более 0,1 °C (класс термосопротивлений АА при 0 °C).

Термометры сопротивления изготовленные в виде напыленной на подложку металлической плёнки отличаются повышенной вибропрочностью, но меньшим диапазоном рабочих температур. Максимальный диапазон, в котором установлены классы допуска платиновых термометров для проволочных чувствительных элементов, составляет 660 °C (класс С), для плёночных — 600 °C (класс С).

Удельная величина сопротивления

Удельное сопротивление различно для каждого материала. У диэлектриков оно велико, они практически не пропускают электрического тока и используются для создания изолирующих слоев. Металлы – хорошие проводники, но и у них есть различия по количеству заряженных частиц (электронов, а в полупроводниках это могут быть «дырки», то есть свободные положительно заряженные радикалы). Так, удельное сопротивление стали составляет 0, 013 Ω x кв. мм/м, серебра – 0,016, а у свинца этот параметр достигает величины 0,2. Пользуясь этой славной справочной величиной можно легко вычислить, какой диаметр провода должен быть у проводника, чтобы при заданной длине он имел нужное сопротивление. И наоборот, измерив омметром участок в 1000 мм и зная площадь сечения, можно определить, из какого металла сделан предмет.

Популярные статьи  Коэффициент пульсации

Терморезисторы

Терморезистор — полупроводниковый резистор, электрическое сопротивление которого зависит от температуры.
Для терморезисторов характерны большой температурный коэффициент сопротивления, простота устройства, способность работать в различных климатических условиях при значительных механических нагрузках, стабильность характеристик во времени. Они могут иметь весьма малые размеры, что существенно для измерений температуры малых объектов и снижения инерционности измерения. Обычно терморезисторы имеют отрицательный температурный коэффициент сопротивления, в отличие от большинства металлов и металлических сплавов.

§ 109. Зависимость сопротивления проводника от температуры. Сверхпроводимость

Вспомните, какую физическую величину называют сопротивлением.

От чего и как зависит сопротивление металлического проводника?

Различные вещества имеют разные удельные сопротивления (см. § 101). Зависит ли сопротивление от состояния проводника? от его температуры? Ответ должен дать опыт.

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать её в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной 0 °С, сопротивление проводника равно R, а при температуре t оно равно R, то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t:

Коэффициент пропорциональности α называют температурным коэффициентом сопротивления.

Запомни Температурный коэффициент сопротивления — величина, равная отношению относительного изменения сопротивления проводника к изменению его температуры.

Он характеризует зависимость сопротивления вещества от температуры.

Важно Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К (на 1 °С). Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры

Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов

Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов

Важно У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается. Для них α -1

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счёт изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения

где ΔТ — изменение абсолютной температуры.

Запомни Так как а мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 16.2).

Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решётки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент а довольно мал, учёт зависимости сопротивления от температуры при расчёте параметров нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока за счёт нагревания более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем (Константин), температурный коэффициент сопротивления очень мал: α ≈ 10 -5 К -1 ; удельное сопротивление Константина велико: ρ ≈ 10 -6 Ом • м. Такие сплавы используют для изготовления эталонных резисторов и добавочных резисторов к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Существуют и такие металлы, например никель, олово, платина и др., температурный коэффициент которых существенно больше: α ≈ 10 -3 К -1 . Зависимость их сопротивления от температуры можно использовать для измерения самой температуры, что и осуществляется в термометрах сопротивления.

На зависимости сопротивления от температуры основаны и приборы, изготовленные из полупроводниковых материалов, — термисторы. Для них характерны большой температурный коэффициент сопротивления (в десятки раз превышающий этот коэффициент у металлов), стабильность характеристик во времени. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС). Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы. Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Оцените статью