Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации

Защита конденсаторных установок

Чтобы обеспечить безопасность установки, применяются механизмы:

  • датчик температуры, инициирующий подогрев при ее понижении и охлаждение при излишнем нагреве батареи конденсаторов;
  • защита от инцидентов короткого замыкания, сильных скачков тока и напряжения;
  • блокиратор попыток прикосновения к токоведущим деталям;
  • контактный переключатель, отключающий агрегат при отпирании двери с работающим оборудованием.

Советуем изучить — Как устроена и работает электрическая изгородь (электрическое оргаждение)

Монтаж установки с конденсаторной батареей позволит разгрузить электродвигатели, генераторы и другое оборудование, несущее реактивную нагрузку. При подготовке к приобретению нужно рассчитать, куда целесообразнее всего будет подключить агрегат.

Что такое реактивная мощность и что с ней делать.

Асинхронные двигатели, трансформаторы, газоразрядные и люминесцентные лампы, индукционные и дуговые печи и т.д. в силу своих физических свойств вместе с активной энергией потребляют из сети также и реактивную энергию, которая необходима для создания электромагнитного поля. В отличие от активной энергии, реактивная не преобразуется в другие виды – механическую или тепловую – и не выполняет полезной работы, однако вызывает потери при ее передаче. На Рис.1

изображены направления протекания тока при работе с реактивными нагрузками.

Рис.1. Полная мощность.

Наличие в сети реактивной мощности (Q, Вар) характеризуется коэффициентом мощности (PF, cos ф) и является соотношением активной (P, Вт) к полной (S, ВА). Ниже можно увидеть зависимость полной мощности от ее составляющих как на векторной диаграмме, так и на более житейском уровне – бокале пива, где пиво является активной составляющей, а пена – реактивной. Никто же не хочет иметь бокал только с пеной?

Рис.2. Треугольник мощностей. Расчет коэффициента мощности.

При низких значениях коэффициента мощности в сети будет возникать ряд нежелательных явлений, которые могут привести к существенному уменьшению срока службы оборудования. Рекомендуется иметь cos ф не менее 0,9 (например, в Чехии за cos ф менее 0,95 штрафуют). Для этого разработан ряд мероприятий по регулированию баланса реактивной мощности в сети – компенсация реактивной мощности.

Элементы конденсаторной электроустановки

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации

Современная конденсаторная установка обладает следующими элементами:

  1. Конденсатор. Специальные «банки», которые выполнены в виде двухполюсника с постоянным или переменным значением емкости. Изделия отличаются малой проводимостью, предназначаются для накопления заряда. Для получения нужной величины емкости собирается несколько элементов в виде секций.
  2. Коммутационная аппаратура. Шины или кабельные линии, которые собирают конденсаторы в единое целое и подключается к источнику питания. Выбор схемы определяется условиями подключения (звезда и треугольник).
  3. Контакторы и регуляторы. Устройства автоматики, которые используются для регулирования емкости в зависимости от реактивной мощности.

Среди прочего имеются элементы защиты в виде предохранителей, автоматов и так далее.

Схема подключения конденсаторной установки

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Конденсаторная установка подключается в параллель к главному шинопроводу силового трансформатора. При этом используется трансформатор тока, который измеряет значение тока на шинах от силового трансформатора. Трансформатор тока располагается на шинопроводе между фидером силового трансформатора и точкой подключения конденсаторной установки. Выводы трансформатора тока подключаются к клеммной колодке внутри установки, имеющей обозначение «ТТ» Ввод конденсаторной установки в работу производится с помощью комплектного вводного разъединителя, путем поворота ручки в положение «ВКЛЮЧЕНО».

Состав установок КРМ 6(10) кВ

УКРМ комплектуется из отдельных шкафов (модулей), в каждом из которых размещается аппаратура одного функционального назначения и присоединения к сборным шинам.

В стандартный комплект поставки УКРМ входят:

  • шкафы УКРМ в соответствии с опросным листом заказа;
  • комплект эксплуатационных принадлежностей согласно спецификации на заказ (рукоятки оперирования разъединителем, ключи для электромагнитных блокировок и ключи от дверей отсеков шкафов УКРМ);
  • комплект монтажных принадлежностей согласно рабочей документации по заказу (контрольные кабели, жгуты соединительные, сборные шины, проходные и тупиковые изоляторы сборных шин, панели под изоляторы, метизы и смазка);
  • комплект ЗИП по нормам завода-изготовителя (предохранители, метизы, краска, лампы освещения, наконечники и трубки для маркировки проводов и т.п.);
  • паспорт;
  • руководство по эксплуатации;
  • рабочая документация, содержащая принципиальные и монтажные электрические схемы главных и вспомогательных цепей, монтажные чертежи сборных шин и шин заземления, а также чертежи общего вида УКРМ.

Типы оборудования, применяемого в УКРМ:

Наименование оборудования Тип, марка Предприятие-изготовитель
Разъединители РВЗ Трейд Инжиниринг
Контакторы VSC ABB
HCA Hyudai
КВТ АО «НПП «Контакт»
Трансформаторы напряжения ЗНОЛП ПАО «СЗТТ»
ЗНОЛП-ЭК Электрощит-К
ЗНОЛП-НТЗ ООО «НТЗ «Волхов»
Трансформаторы тока ТОЛ-10, ТЛО-10 Различные
Конденсаторные батареи A TEFA LIFASA
Токоограничивающий реактор ICR LIFASA
Ограничители перенапряжений ОПН Различные
Контроллер Master control VAR LIFASA

Конструкция шкафов УКРМ с разъединителем и кабельными вводами обеспечивает возможность подключения высоковольтных кабелей сечением до 240 мм².

По согласованию с заводом изготовителем в шкафах УКРМ возможно применение оборудования других предприятий-изготовителей.

Как правило, принципиальные схемы вспомогательных цепей УКРМ предоставляются заказчиком. При отсутствии таких схем предприятие-изготовитель может предоставить заказчику типовую схему для согласования их применения или корректировки.

Возможно выполнение схем вспомогательных цепей УКРМ по Техническому заданию Заказчика.

Монтаж вспомогательных цепей в пределах УКРМ производиться многопроволочным проводом или кабелем с медными жилами с сечением не менее 2,5 мм² для токовых цепей и не менее 1 мм² для остальных цепей.

Принципиальные и монтажные схемы вспомогательных цепей входят в состав рабочей документации УКРМ, поставляемой с заказом.

Эксплуатация и обслуживание конденсаторных установок

До включения конденсаторной установки в работу необходимо провести следующие механические испытания:

  • проверку контакторов, конденсаторов, электронного регулятора, силовых предохранителей и предохранителей вторичных цепей на отсутствие механических повреждений и наличия посторонних предметов;
  • проверку соединений силовых проводов и контакторов, протянуть по необходимости;
  • проверку болтовых соединений на шинах, выводов предохранителей;
  • проверку механического крепления и заземления конденсаторов;
  • проверку фазировки подсоединения силового кабеля к вводным шинам;
  • проверку качества болтовых соединений подводящего силового кабеля;
  • проверку подключения к контуру заземления.
Популярные статьи  Магнитный пускатель ПМ12

До включения конденсаторной установки в работу необходимо провести следующие электрические испытания:

  • программирование параметров регулятора реактивной мощности;
  • проверку работоспособности УКМ;
  • включение всех ступеней УКМ в ручном режиме для всех видов регуляторов;
  • проверку отсутствия мест локального перегрева контактов. Отключение УКМ в ручном режиме;
  • проверку соответствия включения ступеней регулятора и конденсаторов;
  • трехкратное включение всех ступеней УКМ в ручном режиме для всех типов регуляторов;
  • проверку отсутствия дребезга контактов в контакторах. 8.4 Все измерения, испытания и опробования в соответствии с действующими директивными документами, настоящей инструкции, проведенные монтажным персоналом, должны быть оформлены соответствующими актами и протоколами.

При температуре в помещении, превышающей +40°С в течение 4-х часов, следует отключить установки от сети. Во время эксплуатации УКМ, необходимо регулярно производить технические осмотры. Осмотры подразделяются:

  • ежедневные;
  • ежемесячные;
  • внеочередные.

Ежедневный осмотр. Необходимо контролировать:

  • температуры окружающего воздуха, в месте расположения установки;
  • аварийных сигналов на регуляторе.

Ежемесячный осмотр. Необходимо проверять:

  • исправность ограждений, целостность замков дверей, отсутствие посторонних предметов;
  • отсутствие пыли, грязи;
  • срабатывание защиты в конденсаторных элементах (поднятие крышки конденсаторного элемента на 10-12 мм);
  • значение напряжения на шинах установки (смотри описание на регулятор);
  • значение тока установки и равномерность нагрузки отдельных фаз;
  • исправность всех контактов внешним осмотром электрической схемы включения установки (токопроводящих шин, заземления, контакторов, разъединителей, и т. п.);
  • подтяжка крепежа контактных соединений;
  • наличие и исправность блокировок;
  • исправность цепи разрядного резистора;
  • проверка целостности плавких вставок предохранителей, проверяется ом-метром;
  • наличие и качество средств защиты (специальной штанги и др.), средств тушения пожара.

Внеочередной осмотр. Производится в случаях:

  • появления разрядов (непрерывного треска) в конденсаторах;
  • повышения напряжения на вводе в установку;
  • повышение температуры окружающего воздуха до значений близких к предельно допустимым.

Неисправные элементы схемы необходимо заменять элементами того же типономинала. Допускается использовать элементы, способные по техническим характеристикам заменить неисправные в допустимых режимах работы. Обо всех технических осмотрах и неисправностях, обнаруженных во время технических осмотров установок, должны быть произведены соответствующие записи в журнал эксплуатации.

Назначение конденсаторных установок

В зависимости от требований заказчика, КУ решают следующие задачи:

  • Снижают расход и стоимость потребляемой электроэнергии.
  • Гарантируют передачу ресурса по проводам меньшего сечения, без дорогостоящей модернизации всей электросети.
  • Стабилизируют параметры тока при транспортировке на большие расстояния. Предотвращают перепады напряжения на электросетях различного масштаба.
  • Защищают оборудование от перегрузок.
  • Повышают качество поставляемого ресурса.

Наиболее эффективны КУ на производствах с высоким содержанием асинхронных двигателей, силовых установок с cos φ = 0,7 и ниже, и т.д.

Выбор ступени регулирования УКРМ

Конденсаторная батарея (УКРМ) содержит ограниченный набор конденсаторов. Конденсаторы могут быть одинаковой или различной ёмкости и разбиты на группы. Каждая группа имеет свое коммутационное устройство (контактор) для включения в электрическую цепь. Микропроцессорный блок контроля и управления измеряет параметры текущего режима (ток и напряжение) и подбирает такое сочетание имеющихся групп конденсаторов, чтобы обеспечить требуемое значение коэффициента реактивной мощности. Очевидно, что регулирование реактивной мощности УКРМ является дискретным. Минимальная величина изменяемого значения реактивной мощности УКРМ называется ступенью регулирования ΔQКУ. Чем меньше ступень регулирования, тем более громоздким и дорогим получается УКРМ, так как увеличивается число конденсаторных групп и коммутационных устройств, но тем точнее поддерживается заданный коэффициент реактивной мощности.

Таким образом, при выборе УКРМ необходимо наряду с номинальной мощностью определить величину ступени регулирования. Ступень регулирования должна быть достаточно мала для поддержания коэффициента реактивной мощности в заданном диапазоне, см. (12), и в то же время без необходимости не увеличивала габариты и стоимость УКРМ.

Для наглядности нанесём значения QКУ, QКУ.min и QКУ.max на числовую ось Q для текущего (не расчетного) режима нагрузки в фиксированный момент времени (см. рис. 2, а).

Текущий режим нагрузки характеризуется значениями:

  • Pнагр.(Qнагр.) – активная (реактивная) мощность нагрузки;
  • cosϕнагр. – коэффициент мощности нагрузки;
  • QКУ – реактивная мощность, вырабатываемая КУ;
  • QКУ.min и QКУ.max – граничные значения реактивной мощности УКРМ для текущего режима нагрузки.

Рис. 2. Изображение реактивной мощности УКРМ в текущем режиме.

а – до переключения ступени регулирования; б – в момент переключения ступени регулирования

Значение QКУ находится между значениями QКУ.min и QКУ.max, значит коэффициент реактивной мощности tgϕВН находится в допустимом диапазоне значений. При уменьшении реактивной мощности нагрузки Qнагр. значения QКУ.min и QКУ.max начинают уменьшаться, см. (5), (16) и (17). При этом они смещаются влево на оси Q до тех пор, пока QКУ.max не достигнет значения QКУ (см. рис. 2, б). При дальнейшем снижении Qнагр. значение QКУ выходит за допустимый диапазон. В этот момент УКРМ снижает вырабатываемую реактивную мощность QКУ на величину ступени регулирования ΔQКУ до значения Q’КУ. Очевидно, что величина ступени регулирования не должна превышать разность между значениями QКУ.max и QКУ.min. Аналогичные рассуждения можно провести при увеличении реактивной мощности нагрузки Qнагр.

Итак, расчётная величина ступени регулирования компенсирующего устройства определяется по выражению:

(21)

Подставив в (21) выражения (16) и (17), получим формулу расчёта ступени регулирования УКРМ:

(22)

Выбор ступени регулирования УКРМ ΔQКУ выполняется по выражению:

(23)

Подставив (22) в (23), окончательно получим:

(24)

Из (22) видно, что расчетное значение ступени регулирования зависит от величины активной мощности нагрузки Pнагр.; при снижении Pнагр. снижается и расчетное значение ΔQКУ.р. Следовательно, если ступень регулирования выбрана по расчетной мощности нагрузки Pр.нагр., то приемлемое значение tgϕВН гарантированно будет обеспечиваться только в диапазоне расчетных (максимальных) значений нагрузок потребителей. При снижении потребляемой нагрузки Pнагр. величина ΔQКУ.р может оказаться меньше ΔQКУ, и tgϕВН выйдет за границы диапазона допустимых значений tgϕmax и tgϕmin. Во избежание этой ситуации рекомендуется производить расчет ΔQКУ.р в режиме малых нагрузок. Тогда выбранная ступень регулирования ΔQКУ по выражению (24) обеспечит поддержание tgϕВН в требуемом диапазоне в режиме и больших, и малых нагрузок.

Популярные статьи  Почему в 1 точке работают проходные выключатели, а в двух других нет тока?

Защита

5.6.16. Конденсаторные установки в целом должны иметь, защиту от токов КЗ, действующую на отключение без выдержки времени. Защита должна быть отстроена от токов включения установки и толчков тока при перенапряжениях.

5.6.17. Конденсаторная установка в целом должна иметь защиту от повышения напряжения, отключающую батарею при повышении действующего значения напряжения сверх допустимого. Отключение установки следует производить с выдержкой времени 3-5 мин. Повторное включение конденсаторной установки допускается после снижения напряжения в сети до номинального значения, но не ранее чем через 5 мин после ее отключения. Защита не требуется, если батарея выбрана с учетом максимально возможного значения напряжения цепи, т. е. так, что при повышении напряжения к единичному конденсатору не может быть длительно приложено напряжение более 110% номинального.

5.6.18. В случаях, когда возможна перегрузка конденсаторов токами высших гармоник, должна быть предусмотрена релейная защита, отключающая конденсаторную установку с выдержкой времени при действующем значении тока для единичных конденсаторов, превышающем 130% номинального.

5.6.19. Для конденсаторной батареи, имеющей две или более параллельные ветви, рекомендуется применять защиту, срабатывающую при нарушении равенства токов ветвей.

5.6.20. На батареях с параллельно-последовательным включением конденсаторов каждый конденсатор выше 1,05 кВ должен быть защищен внешним предохранителем, срабатывающим при пробое конденсатора. Конденсаторы 1,05 кВ и ниже должны иметь встроенные внутрь корпуса плавкие предохранители по одному на каждую секцию, срабатывающие при пробое секции.

5.6.21. На батареях, собранных по схеме электрических соединений с несколькими секциями, должна применяться защита каждой секции от токов КЗ независимо от защиты конденсаторной установки в целом. Такая защита секции необязательна, если каждый единичный конденсатор защищен отдельным внешним или встроенным предохранителем. Защита секции должна обеспечивать ее надежное отключение при наименьших и наибольших значениях тока КЗ в данной точке сети.

5.6.22. Схема электрических соединений конденсаторных батарей и предохранители должны выбираться такими, чтобы повреждение изоляции отдельных конденсаторов не приводило к разрушению их корпусов, повышению напряжения выше длительно допустимого на оставшихся в работе конденсаторах и отключению батареи в целом.

Для защиты конденсаторов выше 1 кВ должны применяться предохранители, ограничивающие значение тока КЗ.

Внешние предохранители конденсаторов должны иметь указатели их перегорания.

5.6.23. Защита конденсаторных установок от грозовых перенапряжений должна предусматриваться в тех случаях и теми же средствами, какие предусмотрены в гл. 4.2.

Схема электрических соединений, выбор оборудования

5.6.7. Конденсаторные установки могут присоединяться к сети через отдельный аппарат, предназначенный для включения и отключения только конденсаторов, или через общий аппарат с силовым трансформатором, асинхронным электродвигателем или другим электроприемником. Эти схемы могут применяться при любом напряжении конденсаторной установки.

5.6.8. Конденсаторные батареи на напряжение выше 10 кВ собираются из однофазных конденсаторов путем их параллельно-последовательного соединения. Число последовательных рядов конденсаторов выбирается так, чтобы в нормальных режимах работы токовая нагрузка на конденсаторы не превышала номинального значения. Число конденсаторов в ряду должно быть таким, чтобы при отключении одного из них из-за перегорания предохранителя напряжение на оставшихся конденсаторах ряда не превышало 110% номинального.

5.6.9. Конденсаторные батареи па напряжение 10 кВ и ниже должны собираться, как правило, из конденсаторов с номинальным напряжением, равным номинальному напряжению сети. При этом допускается длительная работа единичных конденсаторов с напряжением не более 110% номинального.

5.6.10. В трехфазных батареях однофазные конденсаторы соединяются в треугольник или звезду. Может применяться также последовательное или параллельно-последовательное соединение однофазных конденсаторов в каждой фазе трехфазной батареи.

5.6.11. При выборе выключателя конденсаторной батареи должно учитываться наличие параллельно включенных (например, на общие шины) конденсаторных батарей. При необходимости должны быть выполнены устройства, обеспечивающие снижение толчков тока в момент включения батареи.

5.6.12. Разъединитель конденсаторной батареи должен иметь заземляющие ножи со стороны батареи, сблокированные со своим разъединителем. Разъединители конденсаторной батареи должны быть сблокированы с выключателем батареи.

5.6.13. Конденсаторы должны иметь разрядные устройства.

Единичные конденсаторы для конденсаторных батарей рекомендуется применять со встроенными разрядными резисторами. Допускается установка конденсаторов без встроенных разрядных резисторов, если на выводы единичного конденсатора или последовательного ряда конденсаторов постоянно подключено разрядное устройство. Разрядные устройства могут не устанавливаться на батареях до 1 кВ, если они присоединены к сети через трансформатор и между батареей и трансформатором отсутствуют коммутационные аппараты.

В качестве разрядных устройств могут применяться:

  • трансформаторы напряжения или устройства с активно-индуктивным сопротивлением — для конденсаторных установок выше 1 кВ;
  • устройства с активным или активно-индуктивным сопротивлением — для конденсаторных установок до 1 кВ.

5.6.14. Для достижения наиболее экономичного режима работы электрических сетей с переменным графиком реактивной нагрузки следует применять автоматическое регулирование мощности конденсаторной установки путем включения и отключения ее в целом или отдельных ее частей.

5.6.15. Аппараты и токоведущие части в цепи конденсаторной батареи должны допускать длительное прохождение тока, составляющего 130% номинального тока батареи.

Типовые схемы подключения УКРМ

Для повышения коэффициента мощности в электрических сетях применяют устройства компенсации реактивной мощности. УКРМ – отличный инструмент для выполнения программы энергосбережения и снижения потребляемой реактивной мощности.

Компенсация реактивной мощности актуальна в основном для промышленных объектов, где используется огромное количество электродвигателей.

Существуют как автоматические так и нерегулируемые конденсаторные установки. Предпочтение следует отдавать АКУ.

Кстати, у меня имеется программа для расчета емкости конденсаторной установки.

Обязательным условием для автоматической компенсации реактивной мощности является наличие внешнего измерительного трансформатора тока, измеряющего фазный ток потребления нагрузки, которую предполагается компенсировать. В некоторых случаях для суммирования сигналов тока с нескольких внешних ИТТ для одной КРМ применяется суммирующий трансформатор тока. При таком способе включения внешние ИТТ, должны быть установлены в одинаковой фазе на вводах, и коэффициенты трансформации их должны быть одинаковы.

Рассмотрим основные схемы подключения УКРМ в условно-симметричной сети 0,4кВ. В такой сети достаточно контролировать ток в одной фазе.

Популярные статьи  SDM конденсаторы без маркировки

1 Индивидуальная компенсация реактивной мощности.

Индивидуальная компенсация реактивной мощности

В данной схеме силовая часть КРМ присоединяется непосредственно на зажимы крупного потребителя РМ (или в непосредственной близости). Внешний ИТТ (ТА1) устанавливается на одной из фаз ввода потребителя.

2 Групповая компенсация реактивной мощности.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Групповая компенсация реактивной мощности

При групповой компенсации силовая часть КРМ присоединяется на шины групповой сборки (ШР, ЩС и т.д.). Внешний ИТТ (ТА1) устанавливается на одной из фаз ввода группового щита.

3 Групповая компенсация реактивной мощности при питании с 2-х вводов.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Групповая компенсация реактивной мощности при питании с 2-х вводов

Для реализации данной схемы используют два измерительных трансформатора тока и суммирующий трансформатор тока. Внешние ИТТ (ТА1 и ТА2) устанавливаются на одной из фаз вводов группового щита. Для суммирования показаний тока с внешних ИТТ применяется суммирующий ТТ (ТА3). Коэффициенты трансформации внешних ИТТ (ТА1, ТА2) должны быть одинаковы.

4 Централизованная компенсация реактивной мощности.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Централизованная компенсация реактивной мощности

Пожалуй, одна из самых распространенных схем компенсации реактивной мощности. Внешний ИТТ (ТА1) устанавливаются на одной из фаз ввода секции шин 0,4кВ.

5 Централизованная компенсация реактивной мощности с двумя питающими трансформаторами.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Централизованная компенсация реактивной мощности с двумя питающими трансформаторами

Питающие трансформаторы могут работать как по отдельности, так и в параллели. Внешние ИТТ (ТА1, ТА2) устанавливаются на одной из фаз вводов секции шин 0,4кВ. Для согласования сигналов тока применяется суммирующий ТТ (ТА3), коэффициенты трансформации ИТТ ТА1 и ТА2 должны быть одинаковы.

6 Централизованная посекционная компенсация реактивной мощности с двумя питающими трансформаторами.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации
Централизованная посекционная компенсация реактивной мощности с двумя питающими трансформаторами

В данной схеме реализовано две секции шин с двумя питающими трансформаторами (Т1, Т2) и активным секционным выключателем (QS3). Внешние ИТТ (ТА1, ТА2) устанавливаются на одной из фаз вводов секции шин 0,4кВ, а также на межсекционной связи (ТА3, ТА4). Для согласования сигналов тока применяется суммирующие ТТ (ТА5, ТА6), коэффициенты трансформации ИТТ ТА1 — ТА4 должны быть одинаковы.

Я думаю теперь у вас возникнет меньше вопросов, при проектировании объектов, нуждающихся в компенсации реактивной мощности.

Советую почитать:

Как соединить TN-C с TN-C-S?

Как включить эвакуационное освещение при пожаре?

Применение промежуточного реле в качестве контактора

Щит управления системой электрообогрева

Стандартная схема подключения УКРМ

Одновременно со строительными работами выполняется разметка участка с последующей установкой опор и крепежных элементов. Параллельно осуществляют приемку оборудования. Согласно тому, как была разработана схема подключения УКРМ, монтируются токопроводящие линии и сети заземления. Устраивается общая система освещения. Отдельные электротехнические устройства собирают, если это возможно, в блоки. На специально организованном производственном участке изготавливают каркас, ограждение, различные приспособления.

2. Основной этап.

Помимо проекта монтажники должны учитывать требования таких документов:

— инструкция производителя УКРМ;

— «Правила устройства электроустановок»;

— «Технические условия на производство и приемку строительных и электромонтажных работ».

В общем случае придерживаются следующего порядка выполнения монтажных работ:

Назначение конденсаторных установок

Главное, для чего нужна конденсаторная установка, — устранение реактивной мощности, которая создает избыточное напряжение в сети и может повредить оборудование. И поскольку негативные процессы возникают практически в любых электросетях, установки получили максимально широкое распространение.

Формально конденсаторные установки можно использовать в любой электросети для ее разгрузки. Но встает вопрос экономической целесообразности. Поэтому зачастую эксплуатация конденсаторных установок выгодна на предприятиях, производствах, крупных инфраструктурных объектах с высоким уровнем потребления электроэнергии. К ним относятся предприятия:

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации

  • химической отрасли;
  • пищевой промышленности;
  • нефтеперерабатывающие;
  • машиностроительные;
  • приборостроительные.

Таким образом, понимание назначения конденсаторных установок должно быть определяющим при решении о закупке и монтаже подобного оборудования.

Тип конденсаторной установки

Характеристики конденсаторных установок включают множество параметров, по которым, соответственно, оборудование делится на виды и классы. По типу сборки они бывают:

  1. Модульные (устанавливаются в групповых сетях на крупных производственных и промышленных объектах);
  2. Моноблочные (простые и компактные устройства для эксплуатации на небольших предприятиях).

Также встречаются разные типы установок по степени автоматизации: нерегулируемые, регулируемые, полуавтоматические и автоматические. Иногда необходимо, чтобы оборудование работало круглосуточно, например, если производство идет в несколько смен или надо поддерживать заданные климатические условия на предприятии.

Но если на производстве мощность работающего оборудования не постоянная, то устанавливается автоматическая конденсаторная установка. Она оснащается специальным контроллером, отслеживающим коэффициент мощности. При его изменении установка подключает или отключает конденсаторные батареи для эксплуатации с максимальной эффективностью.

Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации

Конденсаторная установка УКРМ может использоваться в сетях с низким или высоким напряжением:

  • УКМ58 0 4 — подходит для эксплуатации в сетях с низким напряжением. Номинальное напряжение составляет 400 В, но фактическое его значение обычно находится в пределах 360 В. Конденсаторные установки УКМ 58 0,4 могут иметь разные характеристики, мощность ступени регулирования, климатические исполнение и категория размещения обычно отображаются в маркировке модели.
  • УКЛ относятся к оборудованию для сетей с высоким напряжением. Особенностью конструкции такой конденсаторной установки является наличие полипропиленовой пленки, играющей роль диэлектрика.

Очень важно, чтобы расчет целесообразности эксплуатации конденсаторной установки и подбор ее характеристик производились опытным электриком. В этом случае оборудование принесет пользу, позволит снизить затраты предприятия, уберечь дорогостоящую электронику, будет простым в обслуживании и быстро окупится

Самое интересное: ТОП статей по спецтехнике и актуальные новости

КрАЗ-«Караван» оценивали аграрии Украины

21 ноября 2013

ПАО «АвтоКрАЗ» отгрузил автоцистерны в Египет

24 октября 2013

МТЗ презентовал концепт нового трактора

28 мая 2018

Мировая премьера линейки продукции военного назначения «Тракторных заводов» на RAE-2013

20 сентября 2013

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: