Расчеты для улучшения коэффициента мощности в однофазной сети

Содержание

Рассчитываем мощность трехфазной сети

Для расчета примем некий производственный цех, в котором установлены тридцать электродвигателей. В цех заходит четырехпроводная линия, помним что это 3 фазы: A, B, C, и нейтраль(ноль). Номинальное напряжение 380/220 вольт. Суммарная мощность всех двигателей составляет Ру1 — 48кВт, еще у нас есть осветительные лампы в мастерской, суммарная мощность которых составляет Ру2- 2кВт.

  • Ру — установленная суммарная мощность группы потребителей, по величине равная сумме их заявленных мощностей, измеряется в кВт.
  • Кс — коэффициент спроса при режиме наивысшей нагрузки. Коэффициент спроса учитывает самое большое возможное число включений приемников группы. Для электродвигателей коэффициент спроса должен брать в расчет величину их загрузки.

Коэффициент спроса для осветительной (освещения) нагрузки, то есть освещения, Кс2-0,9, и для силовой нагрузки, то есть электродвигателей Кс1=0,35. Усредненный коэффициент мощности для всех потребителей cos( φ ) = 0,75. Необходимо найти расчетный ток линии.

Как повысить коэффициент мощности в цепях синусоидального тока

Влияние реактивного тока

Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника. Так дл асинхронных двигателей, трансформаторов, сварочных аппаратов и других реактивный ток необходим для создания вращающегося магнитного поля у электрических машин и переменного магнитного потока трансформаторов.Активная мощность таких потребителей пи заданных значениях тока и напряжения зависит от :

Снижение коэффициента мощностиприводит к увеличению тока. особенно сильно снижается при работе двигателей и трансформаторов вхолостую или при большой недогрузке. Если в сети есть реактивный ток, мощность генератора, трансформаторных подстанции и сетей используется не полностью.

Внимание! С уменьшениемзначительно возрастают потери энергии на нагрев проводов и катушек электрических аппаратов. Например, если активная мощность остается постоянной, обеспечивается током 100 А при =1, то при понижении до 0,8 и той же мощности сила тока в сети возрастает в 1,25 раза

Потери на нагрев проводов сети и обмоток генератора (трансформатора) Рнагр=I2сети хRсети пропорциальны квадрату тока, то есть они возрастают в 1,252=1,56 раза.

При =0,5 сила тока в сети при той же активной мощности равна 100/0,5=200 А, а потери в сети возрастают в 4 раза. Возрастают потери напряжения в сети, что нарушает нормальную работу других потребителей.

Счетчик потребителя во всех случаях отсчитывает одно и то же количество потребляемой активной энергии в единицу времени, но в последнем случае генератор подает в сеть силу тока, а в 2 раза большую, чем в первом. Нагрузка же генератора (тепловой режим) определяется не активной мощностью потребителей, а полной мощностью в киловольт-амперах, то есть произведением напряжения на силу тока, протекающего по обмоткам.

Если обозначить сопротивление проводов линии Rл, то потери мощности в ней можно определить так:

Таким образом, чем выше коэффициент мощности потребителя, тем меньше потери мощности в линии и дешевле передача электроэнергии.

Коэффициент мощности

Коэффициент мощности – это величина, которая показывает, как используется номинальная мощность источника.

Так, для питания приемника 1000кВт при =0,5 мощность генератора должна быть S=P/ =1000/0,5=2000кВА, а при =1 S=1000 кВА.

Следовательно, повышение коэффициента мощности увеличивает степень использования мощности генераторов.

Для повышения коэффициента мощности электрических установок применяют компенсацию реактивной мощности.

Увеличения коэффициента мощности (уменьшения угла — сдвига фаз тока и напряжения) можно добиться следующими способами:

— заменой мало загруженных двигателей двигателями меньшей мощности;

— понижением напряжения;

— выключением двигателей и трансформаторов, работающих на холостом ходу;

— включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.

На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы – синхронные перевозбужденные электродвигатели.

Формулы для расчета тока в трехфазной сети

Подсчитать токовую энергию в трехфазной сети сложно, поскольку вместе одной фазы есть три. К тому же, сложность заключается в использовании нескольких схем соединения. Трудность состоит в симметрии или ее отсутствии во время распределения нагрузки по фазам.

Для определения силы тока в трехфазной сети, нужно общее число ватт поделить на показатель 1,73, перемноженный на напряжение и косинус мощностного коэффициента, который отражает активную и реактивную составляющую сопротивления нагрузки. Что касается однофазной сети, то из выражения для подсчета убирается показатель 1,73. Остается формула I = P/(U*cos φ).

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Трехфазная линия передачи

Оборудование для защиты сети от короткого замыкания

Вы уже знаете, как посчитать амперы, зная мощность и напряжение, или вычислить мощность, когда известны сила тока и напряжение. Но иногда даже точные и верные расчеты не спасают от короткого замыкания. ЧП может случиться на трехфазной линии по не зависящим от пользователя причинам: попадание постороннего объекта на провода, обрыв из-за падения дерева. В таком случае даже если вы максимально правильно рассчитали силу тока по мощности и в вашем доме самая идеальная проводка, возможен пожар или выход электроприборов из строя. Защитить свою сеть можно следующими способами:

  • поставить плавкий предохранитель. Если амперы в электроцепи превысят допустимые значения, то предохранитель расплавится, цепь будет нарушена. Цена плавкого предохранителя – 400-600 рублей. Выбирайте товар отечественного производства, рассчитанный на работу с нашими электросетями;
  • установить автоматический выключатель. Это современное оборудование, которое надежно защищает бытовые приборы от преждевременного выхода из строя вследствие проблемы с проводами. Стоит от 200 до 2 тысяч рублей. Сработает за секунды в отличие от плавкого предохранителя, которому на размыкание потребуется примерно полминуты. При подключении изучите подробную информацию о маркировках проводов.
Популярные статьи  Программа Dialux для расчёта и проектирования освещения

Расчеты для улучшения коэффициента мощности в однофазной сети

Автоматический выключатель тока защитит бытовую технику от поломок из-за короткого замыкания сети.

Расчет компенсирующего устройства: присутствие солнечных энергоустановок

Если на объекте промышленного потребителя установлена солнечная электростанция, активная мощность, потребляемая из сети, снижается, поскольку она вырабатывается солнечной энергоустановкой и потребляется непосредственно на объекте.

Как следствие, изменяется соотношение между активной и реактивной мощностями, потребляемыми из сети, и коэффициент мощности с солнечной энергоустановкой оказывается ниже, чем без нее

Поэтому, во избежание штрафов за низкий коэффициент мощности, особое внимание должно быть коррекции коэффициента мощности, т.к. в противном случае низкий cos ? может свести на нет все выгоды от собственной электростанции

Рассмотрим коррекцию коэффициента мощности как с точки зрения установленной мощности, так и с точки зрения конструкции. Увеличение коэффициента мощности фактически меняет условия возникновения резонанса с участием питающего систему трансформатора СН/НН. Если солнечная энергоустановка в состоянии выработать больше электроэнергии, чем потребляется в текущий момент, избыточную энергию можно отдавать в сеть. В этом случае корректор коэффициент мощности должен иметь возможность работы во всех четырех квадрантах. При этом два «стандартных» квадранта используются при работе потребителей, потребляющих из сети как активную, так и реактивную мощность, а два дополнительных – для работы объекта в качестве «генератора», когда активная мощность отдается в сеть, хотя реактивная мощность все равно потребляется.

Все электронные контроллеры cos ?, выпускаемые компанией Хомов электро, способны работать в четырех квадрантах. При этом можно задавать два целевых значения cos ? для оптимизации экономических показателей системы. Для «генерирующих» квадрантов может изменять ряд настроек. Рекомендуется задавать величину, равную 1, для оптимизации работы батареи КРМ. Более подробная информация по контроллерам cos ? приведена в соответствующих руководствах по эксплуатации. Для получения максимальной выгоды от установки батареи КРМ, мы рекомендуем применение конденсаторов на основе бумаги с двусторонней металлизацией, поскольку только такие конденсаторы гарантируют срок службы, соизмеримый со сроком службы солнечной энергоустановки.

Активная и реактивная мощность

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.Расчеты для улучшения коэффициента мощности в однофазной сети

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.Расчеты для улучшения коэффициента мощности в однофазной сети

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Оборудование для защиты сети от короткого замыкания

Вы уже знаете, как посчитать амперы, зная мощность и напряжение, или вычислить мощность, когда известны сила тока и напряжение. Но иногда даже точные и верные расчеты не спасают от короткого замыкания. ЧП может случиться на трехфазной линии по не зависящим от пользователя причинам: попадание постороннего объекта на провода, обрыв из-за падения дерева. В таком случае даже если вы максимально правильно рассчитали силу тока по мощности и в вашем доме самая идеальная проводка, возможен пожар или выход электроприборов из строя. Защитить свою сеть можно следующими способами:

  • поставить плавкий предохранитель. Если амперы в электроцепи превысят допустимые значения, то предохранитель расплавится, цепь будет нарушена. Цена плавкого предохранителя – 400-600 рублей. Выбирайте товар отечественного производства, рассчитанный на работу с нашими электросетями;
  • установить автоматический выключатель. Это современное оборудование, которое надежно защищает бытовые приборы от преждевременного выхода из строя вследствие проблемы с проводами. Стоит от 200 до 2 тысяч рублей. Сработает за секунды в отличие от плавкого предохранителя, которому на размыкание потребуется примерно полминуты. При подключении изучите подробную информацию о маркировках проводов.

Автоматический выключатель тока защитит бытовую технику от поломок из-за короткого замыкания сети.

Что такое коэффициент мощности

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.Расчеты для улучшения коэффициента мощности в однофазной сети

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.Расчеты для улучшения коэффициента мощности в однофазной сети

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.Расчеты для улучшения коэффициента мощности в однофазной сети

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.Расчеты для улучшения коэффициента мощности в однофазной сети

В качестве примера можно взять импульсные блоки питания.Расчеты для улучшения коэффициента мощности в однофазной сети

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.Расчеты для улучшения коэффициента мощности в однофазной сети

Популярные статьи  Удельное сопротивление

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.Расчеты для улучшения коэффициента мощности в однофазной сети

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц. Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U — Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ) — Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3) — Сила тока через мощность и сопротивление: I = √(P / R) — Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Источник

Коррекция коэффициента мощности

Коэффициент мощности – это отношение полезной (активной) мощности к полной (кажущейся) мощности, потребляемой электрооборудованием объекта или электроустановкой. Он является мерой эффективности преобразования электрической энергии в полезную работу. Идеальное значение коэффициента мощности равно единице. Любая величина, меньшая, чем единица, означает, что для получения желаемого результата необходима дополнительная мощность. Протекание токов приводит к потерям в генерирующих мощностях и распределительной системе. Нагрузка с коэффициентом мощности 1,0 наиболее эффективно загружает источник, а нагрузка с коэффициентом мощности, к примеру, 0,8 является причиной больших потерь в системе и более высоких расходов на электроэнергию.

Сравнительно небольшое улучшение коэффициента мощности может привести к значительному снижению потерь, так как они пропорциональны квадрату тока.

Если коэффициент мощности меньше единицы, это указывает на присутствие так называемой реактивной мощности. Она требуется для получения магнитного поля, необходимого для работы двигателей и других индуктивных нагрузок. Реактивная мощность, которую также можно назвать бесполезной мощностью или мощностью намагничивания, создаёт дополнительную нагрузку на систему электропитания и увеличивает затраты потребителя за электроэнергию.

Низкий коэффициент мощности обычно является результатом сдвига фаз между напряжением и током на выводах нагрузки. Также его причиной может стать высокое содержание гармоник, то есть сильно искажённая форма тока. Коэффициент мощности чаще всего понижается из-за наличия индуктивных нагрузок: асинхронных двигателей, силовых трансформаторов, ПРА люминесцентных ламп, сварочных установок и дуговых печей. Искажения формы тока могут быть результатом работы выпрямителей, преобразователей, регулируемых приводов, импульсных источников питания, газоразрядных ламп или других электронных нагрузок.

Калькулятор расчета мощности трехфазной сети

Данный онлайн калькулятор позволяет произвести расчет мощности (активной, реактивной и полной) однофазных и трехфазных сетей по току и напряжению. (В случае необходимости вы можете так же воспользоваться нашим калькулятором расчета тока сети).

Мощность сети определяется по формулам:

P=U*I*cosφ — для однофазных сетей;

P=√3*U*I*cosφ — для трехфазных сетей;

  • U — напряжение сети (электроприбора);
  • I — ток сети (электроприбора);
  • cosφ — коэффициент мощности.

Инструкция по использованию калькулятора расчета мощности по току:

  1. Выбираем тип электросети: однофазная или трехфазная.
  2. Вводим значение силы тока в одной из следующих величин, миллиамперы, Амперы, килоамперы, после чего указываем в какой именно величине введено данное значение.
  3. Вводим напряжение сети, как правило оно составляет 220 Вольт — для однофазной сети, либо 380 Вольт — для трехфазной, однако в калькуляторе имеется возможность указать любое значение напряжения, после чего, как и в предыдущем случае, указываем в какой именно величине введено данное значение.
  4. Вводим значение коэффициента мощности, при отсутствии данных он принимается от 0,95 до 1 — для бытовых электросетей, либо от 0,75 до 0,85 — для промышленных электросетей. При расчетах мощности бытовых электросетей и электроприборов значением cosφ допускается пренебречь, в этом случае его значение принимается равным 1.
  5. Нажимаем кнопку «РАСЧИТАТЬ»

В результате расчета мы получаем значение всех мощностей сети в двух величинах:

  • Активной мощности — в Ваттах (Вт) и киловаттах (кВт).
  • Реактивной мощности — в Вольт-амперах реактивных (ВАр) и Киловольт-амперах реактивных (кВАр)
  • Полной мощности — в Вальт-амперах (ВА) и Киловольт-амперах (кВА)

Примечание: при необходимости произвести расчет мощности эл. двигателя необходимо пользоваться этим калькулятором.

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Мощность — это физическая величина, равная отношению количества работы ко времени совершения этой работы.

Мощность электрического тока — это величина, характеризующая скорость преобразования электрической энергии в другие виды энергии. Международная единица измерения — Ватт (Вт/W).

Онлайн калькулятор расчета мощности по току и напряжению, позволяет рассчитать мощность электрического тока по известным значениям силы тока и напряжения сети. При расчете нашим калькулятором, вы получаете результат по классической формуле нахождения мощности: P = U*I. Этого должно быть вполне достаточно при вычислении мощности электрической сети.

Однако существуют уточненные формулы нахождения мощности приборов для одно- и трехфазной сети, в которых добавляется коэффициент мощности cosφ.

Зачем повышать коэффициент мощности? — Руководство по устройству электроустановок

Снижение стоимости электроэнергии

Повышение коэффициента мощности обеспечивает несколько технических и экономических преимуществ, особенно снижение счетов за электроэнергию.

Оптимальное регулирование потребления реактивной мощности дает следующие экономические преимущества.

Приводимая информация основана на фактической структуре тарифных ставок, общепринятой в Европе и направленной на стимулирование потребителей минимизировать потребление реактивной мощности.

Установка конденсаторов для повышения коэффициента мощности позволяет потребителям снижать затраты на электроэнергию за счет поддержания уровня потребления реактивной мощности ниже значения, согласованного (по договору) с поставщиком электроэнергии. В рамках рассматриваемой тарифной структуры счет за потребленную реактивную энергию выставляется по критерию tg φ.Как указано выше:

Популярные статьи  Старение полимерных материалов

(квар·ч / кВт·ч)

Электроснабжающая организация поставляет реактивную энергию бесплатно:

До точки, в которой ее потребление составляет менее 40% от потребления активной энергии

(tg φ = 0,4) в течение максимального периода 16 часов в день (с 06-00 до 22-00 ч) в период наибольшей нагрузки (часто зимой).

Без ограничения в периоды низкой нагрузки зимой, весной и летом.

В течение периодов ограничения счет за реактивную энергию, потребленную свыше 40% активной энергии (tg φ > 0,4), выставляются ежемесячно по текущим ставкам. Таким образом, количество реактивной энергии Wреак, оплачиваемой потребителем в такие периоды, составляет: квар·ч (к оплате) = W кВт·ч (tg φ – 0,4), где W кВт·ч – активная энергия, потребленная в периоды ограничения, tg φ – общая реактивная энергия за период ограничения и 0,4W (кВт·ч) – количество реактивной энергии, поставленной бесплатно за период ограничения.

Tg φ = 0,4 соответствует коэффициенту мощности 0,93. Таким образом, если в периоды ограничения коэффициент мощности никогда не упадет ниже 0,93, потребитель ничего не будет платить за потребленную реактивную мощность.

Однако, получая такие преимущества пониженных затрат на электроэнергию, потребитель должен учитывать стоимость приобретения, установки и обслуживания конденсаторов для повышения коэффициента мощности, а также автоматических регуляторов (в случае ступенчатой компенсации) вместе с дополнительными кВт·ч, потребляемыми диэлектриками.

Учитывая такие затраты на конденсаторы, может оказаться более экономически выгодным обеспечивать только частичную компенсацию, т.е. оплата некоторой потребляемой реактивной энергии может обходиться дешевле, чем 100%-ная компенсация.

Вопрос повышения коэффициента мощности — это, прежде всего, вопрос оптимизации (за исключением очень простых случаев).

Техническая/экономическая оптимизация

Повышение коэффициента мощности позволяет уменьшить номинальные значения мощности трансформаторов, распределительных устройств, кабелей, а также сократить потери мощности и ограничить потери напряжения.

Высокий коэффициент мощности позволяет оптимизировать все компоненты системы, то есть избежать завышения номиналов определенного оборудования. Для получения оптимальных результатов необходимо устанавливать компенсирующие устройства как можно ближе к потребителю реактивной (индуктивной) энергии.

Уменьшения сечения кабелей

Рис. L7: требуемое увеличение сечения кабелей при снижении коэффициента мощности с единицы до 0,4.

Множитель для площади поперечного сечения жил(ы)кабеля 1 1,25 1,67 2,5
cos φ 1 0,8 0,6 0,4

Рис. L7 : Множитель для сечения кабеля в зависимости от cos φ

Снижение потерь (P, кВт) в проводниках

Потери в кабелях пропорциональны квадрату тока и измеряются счетчиком киловатт-часов установки. Например, снижение общего тока в проводнике на 10% приводит к снижению потерь почти на 20%.

Снижение потерь напряжения

Конденсаторы для повышения коэффициента мощности снижают или даже полностью устраняют (индуктивный) реактивный ток в вышележащих проводниках, тем самым снижая или устраняя потери напряжения.

Примечание: избыточная компенсация приводит к повышению напряжения на конденсаторах.

Повышение пропускной способности

Повышение коэффициента мощности нагрузки, питаемой от трансформатора, приводит к снижению тока через трансформатор, что позволяет добавлять нагрузку. На практике может оказаться дешевле повысить коэффициент мощности , чем заменить трансформатор на больший номинал.

Этот вопрос рассматривается в разделе Компенсация на зажимах трансформатора.

ru.electrical-installation.org

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Вам это будет интересно Особенности мегаваттов и киловаттов

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя. Трехфазная система с нейтралью

Расчеты для улучшения коэффициента мощности в однофазной сети
Трехфазная система с нейтралью

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Расчеты для улучшения коэффициента мощности в однофазной сети
Прибор для измерения мощности — ваттметр

Как измерить коэффициент мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

https://youtube.com/watch?v=-MBd7x6GmHU

Заключение

Материал, представленный в данном уроке, как и во всех предыдущих, позволяет исследователю (студенту, аспиранту, инженеру) использовать разработанную виртуальную лабораторную установку для всестороннего модельного эксперимента. В данном уроке не рассмотрены вопросы переходных процессов при включении ККМ, наброса и сброса нагрузки. Не исследованы также электромагнитные и энергетические процессы в полупроводниковых приборах ККМ, при этом сами полупроводниковые приборы представлены простейшими функциональными моделями. Все эти и многие другие исследовательские задачи могут быть решены путем расширения методик измерения с представлением требуемых результатов моделирования, подробно описанных в предыдущих уроках «Школы MATLAB».

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: