Электролитический конденсатор

Содержание

Подбор конденсатора для трехфазного двигателя

Подбор емкости рабочего конденсатора для трехфазного двигателя осуществляется по следующей формуле: Сраб.=k*Iф / U сети.

  • k — это коэффициент, значение которого зависит от схемы подключения трехфазного электродвигателя. 4800 по схеме «треугольник» и 2800 по схеме «звезда»;
  • Iф — обозначает номинальный ток статора. Узнать номинальный ток статора можно на корпусе электродвигателя или посредством специальных клещей;
  • U сети — сетевое напряжение 220 вольт.

Зная все вышеперечисленные параметры можно точно рассчитать емкость рабочего конденсатора в мкФ для электродвигателя. Есть и более простой способ расчёта емкости конденсаторов. Здесь действует правило: на 100 Вт мощности двигателя, берётся примерно 7 мкФ конденсаторной емкости.

Совсем по-другому обстоят дела с подбором пускового конденсатора в электродвигатель. Пусковой конденсатор работает очень непродолжительное время, всего лишь около 3 сек. в момент пуска двигателя. Основной задачей пускового конденсатора, является вывести ротор на номинальный уровень частоты вращения.

Подбирается пусковой конденсатор исходя из следующих параметров:

  • Емкость пускового конденсатора должна быть в 2,5-3 раза больше, чем емкость рабочего конденсатора;
  • Рабочее напряжение пускового конденсатора должно превышать сетевое, не менее чем в 1,5 раз.

Таким образом, зная все вышеперечисленные параметры, не составит особого труда подобрать рабочий и пусковой конденсатор для электродвигателя.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

https://youtube.com/watch?v=Ne4ccjbUY9M

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Качество пассивных элементов

Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  1. Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  2. Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  3. Внутреннее сопротивление (ESR).
  4. Ток утечки.
  5. Старение — фактор, который со временем будет развиваться для любого продукта.

Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %. От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой. 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука

Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic)

Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

Результаты испытаний электролитических конденсаторов на срок службы

Испытаниям подвергаются двухполюсники одной партии и одного типа. Они располагаются в термостате, в котором поддерживается рабочая температура. Через элементы пропускается ток, значение напряжения которого равно Uном. Подключение выполняется в правильной полярности. Отдельно детали испытываются прохождением переменного тока заданной частоты и амплитуды. В процессе испытания периодически контролируются все основные и паразитные параметры.

По результатам делается расчёт долговечности и количества часов без случаев отказов. Отличным результатом является 1 отказ в час на партию в 1 миллиард деталей.

Приборы без функции измерения емкости

Tакие модели используют в режиме омметра. Порядок действий: черный щуп включают в гнездо «СОМ» (отрицательный потенциал), красный — в «V/Ω» (положительный потенциал); переключатель устанавливают в сектор «Ω» на позицию 2 МОм; соблюдая полярность, касаются щупами выводов. B режиме омметра мультиметр подает на щупы напряжение. Оно заряжает конденсатор и сопротивление последнего, постепенно нарастает от мизерного до величины свыше 2 МОм или бесконечности (обозначается единицей на дисплее). Рост сопротивления объективнее всего отражает аналоговый (стрелочный) тестер. О неисправности свидетельствует такое поведение прибора, когда сопротивление: сразу стало бесконечным: оборван вывод; остановилось на отметке ниже 2 МОм: конденсатор пробит.

Приборы без функции измерения емкости.

По времени, за которое сопротивление возрастает от минимума до максимума, путем сравнения с заведомо исправными конденсаторами, можно приблизительно определить емкость исследуемого. Данный метод не подходит для проверки конденсаторов с малой емкостью — 20 мкФ и ниже. Они быстро заряжаются и даже у исправного элемента сопротивление практически сразу становится бесконечным. Для проверки на обратимый пробой конденсатор подключают к лабораторному источнику постоянного тока с регулятором напряжения, последовательно с ним — мультиметр в режиме амперметра. Напряжение плавно увеличивают до максимально допустимого. Если в течение этого процесса тестер отобразит отличную от нуля силу тока, значит имеет место обратимый пробой.

Общие сведения

Конденсаторы предназначены для накопления электрической энергии и выдаче её при необходимости. Эти пассивные электронные компоненты разделяются на виды:

  • конденсатор постоянной ёмкости;
  • конденсатор переменной емкости.

Основная характеристика элемента – ёмкость. Она обозначается буквой С и измеряется в фарадах.

Важно! Единица ёмкости 1 Ф – это очень большая величина. Применяемые на практике детали имеют емкость, измеряемую в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ)

Графическое обозначение на схемах выглядит, как две параллельные вертикальные чёрточки, разделённые промежутком.

Устройство ёмкостного двухполюсника постоянной и переменной ёмкости

Устройство обычного конденсатора именно так и выполнено. Между двумя пластинами (обкладками) находится воздушный промежуток – диэлектрик. Значение ёмкости напрямую зависит от размера обкладок и расстояния между ними.

Работа конденсаторов переменной ёмкости основана на изменении расстояния между пластинами. Подвижные пластины – ротор, неподвижные – статор. Существуют вакуумные переменные ёмкостные элементы. Устройство помещено в колбу, из которой выкачан воздух.

Графическое обозначение на схемах

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Условия работы

Необходимость создания определённого запаса относительно Uном (0,5…0,6 его значения) вызвана тем, что, нагреваясь, электролит выделяет газы. Длительная работа при повышенном напряжении будет вызывать нагрев, а скапливающиеся газы разорвут корпус.

Если схема включения позволит электролитическому двухполюснику работать в цепи переменного тока, то стоит обратить внимание на рабочую частоту 50 Гц. При работе на высоких частотах уменьшают подаваемое на него напряжение

Осторожно. ЭК большой ёмкости рассчитаны на длительное сохранение заряда на своих обкладках

У элементов с малым током утечки этот разряд долгое время будет равен номинальному значению. Поэтому для работы с конденсатором необходимо разрядить его принудительно.

Выводы элемента соединяются между собой при помощи резистора в 1 Мом (0,5 Вт). Если закоротить выводы отвёрткой, можно испортить элемент.

Нежелательные паразитарные компоненты

Транзисторы, интегральные схемы и другие активные компоненты оказывают существенное влияние на качество аудиосигналов. Они используют питание от источников тока для изменения характеристик сигнала. В отличие от активных компонентов, идеальные пассивные не потребляют энергию и не должны изменять сигналы.

В электронных схемах резисторы, конденсаторы и индукторы фактически ведут себя, как активные компоненты и потребляют энергию. Из-за этих паразитных эффектов они могут значительно изменить звуковые сигналы, и для повышения качества требуется тщательный выбор компонентов. Постоянно растущий спрос на аудиооборудование с лучшим качеством звука заставляет производителей CAP выпускать устройства с лучшими характеристиками. В результате чего современные конденсаторы для использования в аудиоприложениях имеют лучшую производительность и более высокое качество звука.

Советуем изучить Дороги и их освещенность

Паразитные эффекты CAP в акустической цепи состоят из эквивалентного последовательного сопротивления (ESR), эквивалентной последовательной индуктивности (ESL), последовательных источников напряжения из-за эффекта Зеебека и диэлектрического поглощения (DA).

Типичное старение, изменения в рабочих условиях и специфические характеристики делают эти нежелательные паразитные компоненты более сложными. Каждый паразитарный компонент по-разному влияет на производительность электронной схемы. Начнем с того, что эффект сопротивления вызывает утечку постоянного тока. В усилителях и других схемах, содержащих активные компоненты, эта утечка может привести к значительному изменению напряжения смещения, которые могут влиять на различные параметры, включая коэффициент качества (Q).

Способность конденсатора обрабатывать пульсации и пропускать высокочастотные сигналы зависит от компонента ESR. Небольшое напряжение создается в точке, где два неоднородных металла связаны из-за явления, известного как эффект Зеебека. Небольшие батареи из-за этих паразитных термопар могут существенно повлиять на производительность схемы. Некоторые диэлектрические материалы являются пьезоэлектрическими, а шум, который они добавляют к конденсатору, проявляется из-за маленькой батареи внутри компонента. Кроме того, электролитические CAP имеют паразитные диоды, которые могут вызывать изменения в смещении или характеристиках сигнала.

Подключение однофазного электродвигателя: использование магнитного пускателя

Но есть другой путь — подключение однофазного электродвигателя как генератора для получения трехфазного напряжения.
В качестве кратковременного переключателя ставят кнопки с группой контактов или реле. По схеме, изображенной на рисунке 2, соединения исполнялись без нейтрали.
Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Помните, что при подключении коллекторного электрического двигателя без блока электроники, он будет работать только на максимальных оборотах, а при запуске будет сильный рывок, большой пусковой ток, искрение на коллекторе.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Следовательно, раз он подключается к сети , все конденсаторы, задействованные в схеме, должны быть не менее чем на В. Магнитное поле основной обмотки поддерживает вращение длительное время.
К примеру, для изготовления наждака или самодельного сверлильного аппарата. Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Как рассчитать емкость Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в В, зависит от самой схемы

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на В

Магнитное поле основной обмотки поддерживает вращение длительное время. Решение — установка 3-х полюсного переключателя. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой. Это связано с тем, что при включении в сеть только рабочей обмотки С1-С2 у однофазного конденсаторного двигателя возникнет пульсирующее магнитное поле, а не вращающееся, то есть он не запустится. С каждым из сетевых проводов необходимо подключить дроссели для исключения помех.

Популярные статьи  Реле контроля фаз

В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем. Это и будет, один из сетевых проводов. Наиболее удобным является магнитный пускатель с управлением от в переменного тока. Все емкости, которые включаются в схему, должны быть однотипными.

Если после этого двигатель окажется горячим, то: Возможно, подшипники загрязнились, зажались или просто износились. Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Станках для обработки сырья и т.
Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Основные параметры для КПЕ

Существует несколько основных параметров для такого рода конденсаторов.

Один из основных — это закон изменения емкости. Данный закон определяет характер изменения емкости. Изменение этого параметра будет происходить в зависимости от угла поворота или же от линейного перемещения подвижной части пластин конденсатора по отношению к их неподвижным частям.

Еще одно из свойств — это температурная стабильность. Данный показатель напрямую зависит от конструкции самого конденсатора. Чаще всего данный показатель является положительным, а для конденсаторов с воздухом в качестве диэлектрика показатель не превышает (200:300) 10-61/град. Если говорить о конденсаторах с твердым диэлектриком, то у них это значение превышает данный показатель.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Электролитический конденсатор

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Стенд для пайки со светодиодной подсветкой
Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…

Подробнее

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Электролитический конденсатор

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Электролитический конденсатор

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Как правильно заменить электролитический конденсатор

Выполняя мелкий ремонт или модернизацию своего любимого электронного устройства, в 8 случаях из 10 требуется замена электролитического конденсатора, так как у них есть свойство со временем высыхать и тем самым выходить из строя. И зачастую под рукой просто нет 100% аналога, требующего замены конденсатора. В этой статье я расскажу, как правильно подобрать аналоги.

Основные правила замены электролитического конденсатора

Электролитический конденсатор характеризуется тремя главными параметрами: напряжение, емкость и температура

Вот на них и стоит обращать внимание при замене вышедшего из строя электролитического конденсатора

Итак, вы разобрали корпус своего прибора, провели диагностику и выявили, что у вас вышел из строя конденсатор (чаще всего они вздуваются).

Прежде чем выпаять определите, где у него плюс, а где минус.

Чаще всего минусовой вывод обозначается светлой полосой.

После этого просто выпаиваем его с помощью паяльника и заменяем.

Идеально, если у вас есть точно такой же электролитический конденсатор. Но если нет, начинаем искать замену.

Подбор конденсатора на замену

Первым делом обращаем внимание на напряжение. Допустим, вам необходим конденсатор на 25 Вольт

Так вот поставить вместо такого конденсатор на 16 Вольт и ниже нельзя. Вам нужно найти замену с таким же напряжением или же выше. То есть можно использовать 35 В, 50 В, 63 В и т. п.

Если же у вас таковых нет, а ремонт нужно выполнить здесь и сейчас, то тогда можно соединить несколько конденсаторов последовательно. Тем самым возрастет напряжение, но при этом снизится емкость.

Следующий параметр, на который мы обращаем внимание — это емкость заменяемого элемента. Зачастую мы меняем сглаживающие конденсаторы, которые служат для сглаживания пульсаций выпрямленного напряжения, и тут работает принцип, чем больше емкость, тем лучше сглаживание

Популярные статьи  Газогенераторные электростанции

Так что для замены выбираем аналогичную емкость или же большую, но никак не меньшую.

Если у вас нет подходящего варианта замены, а на плате достаточно свободного места, то можно выполнить параллельное соединение конденсаторов. При таком соединении происходит сложение емкостей отдельных конденсаторов.

И наконец, третьим основным параметром, на который мы обращаем внимание, является максимальная рабочая температура, на которую рассчитан конденсатор. В этом случае также следует выбирать изделие с аналогичным или более высоким параметром

Кроме этих трех параметров так же следует обращать особое внимание на ESR – эквивалентное последовательное сопротивление. Данный параметр указывается в даташитах на изделие и может быть измерено с помощью RLC – транзистометра

Данный параметр указывается в даташитах на изделие и может быть измерено с помощью RLC – транзистометра .

Советы перед сборкой оборудования

Конденсатор не должен иметь внешних повреждений: трещин, вздутия корпуса и потёков электролита. Полярность выводов должна быть определена правильно. Ориентироваться необходимо на маркировку полярности, наносимую на корпус непосредственно возле выводов. Знак полярности может быть отмечен на вертикальной полосе, по цвету отличной от расцветки корпуса.

Разогрев выводов при пайке должен быть кратковременным, во избежание перегрева детали.

Если на плате есть обозначенные места для установки элемента, то заштрихованная половинка окружности – место для пайки плюсового вывода.

Полярность, обозначенная на плате

Свойства и параметры конденсаторов

Главным параметром приборов этой категории является емкость (С). Она определяет накопительные свойства изделия. Принцип работы базируется на переходе электронов на соответствующую пластину при подключении источника питания. В зависимости от полярности на соответствующем электроде появляются положительные (отрицательные) заряды.

Величина емкости зависит от нескольких параметров:

  • размеров пластин (площади обкладок);
  • расстояния между ними;
  • диэлектрических свойств материала в промежутке.

К сведению. Емкость указывают в кратных единицах. Пример: пФ или pF – это пикофарад (10-12 фарада).

Напряженность плоского конденсатора вычисляют по формуле:

где:

  • q – заряд;
  • e – диэлектрическая проницаемость;
  • S – рабочая площадь.

Из этого выражения несложно сделать вывод о взаимном влиянии электрических и конструкционных параметров. Емкость определяют следующим образом:

где:

  • d – расстояние между пластинами;
  • U – напряжение.

Для удобства применяют удельный показатель:

где V – объем изделия.

По нему делают вывод о том, насколько эффективно выполняет основные функции конденсатор. При высокой удельной емкости разрядка занимает больше времени, если подключают аналогичную нагрузку.

Классом точности или процентным отклонением обозначают допуск от номинальной емкости (значения указаны ± в %):

Потребительские параметры диэлектрика характеризуют электрической прочностью. Как правило, на корпусе изделия указывают номинал напряжения в длительном рабочем режиме для определенных условий с учетом диапазонов:

  • температуры;
  • относительной влажности;
  • давления.

В подробной документации указывают напряжение пробоя.

Индуктивность (собственная) изменяет напряженность поля конденсатора. Эта реактивная составляющая «помогает» изделию разрядиться быстрее или медленнее, по сравнению с расчетной скоростью процесса. Подобные паразитные воздействия искажают рабочие характеристики колебательного контура. Их надо учитывать при проектировании частотно зависимых цепей.

Потери оценивают по электрическому сопротивлению изоляционных слоев. Если соответствующим образом подключить мультиметр, можно уточнить действительный ток утечки. Этот параметр измеряют на протяжении определенного времени. Следует запомнить, что сопротивление зависит от температуры и влажности.

К сведению. Слюдяные конденсаторы будут разряжаться медленнее, по сравнению с бумажными в равных условиях, так как токи утечки отличаются на порядок.

Для комплексного сравнения разных деталей этой категории проверяют стабильность. Этот показатель характеризует постоянство рабочих параметров. Как правило, учитывают влияние температуры. Специализированный коэффициент (ТКЕ) показывает соответствующие изменения при увеличении (снижении) на 1°С.

Как разрядить конденсатор, чтобы минимизировать остаточное напряжение? Ответ на этот вопрос поможет получить изучение абсорбционных процессов в диэлектрическом слое. Соответствующие параметры характеризуют поправочным коэффициентом (Ка). Он увеличивается вместе с повышением температуры.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

Таблица сравнения характеристик.

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы. Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные. Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды.

Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Параллельное соединение

Несколько конденсаторов могут включаться последовательно или параллельно. При параллельном соединении ёмкости всех конденсаторов суммируются. При последовательном соединении общая ёмкость батареи конденсаторов меньше самой маленькой, так как складываются величины, обратные емкости. Но зато напряжение, при котором можно работать такая батарея, будет больше рабочего напряжения одного конденсатора.

На материнских платах в цепи низковольтного источника напряжения, питающего ядро процессора, используется несколько однотипных конденсаторов, соединенных параллельно. Интересный вопрос: почему бы не поставить один конденсатор емкостью, эквивалентной емкости батареи конденсаторов? Дело в том, что у параллельно соединенных конденсаторов суммарное ESR будет гораздо меньше, чем ESR одного конденсатора. Потому что при параллельном соединении сопротивлений общее сопротивление уменьшается.

Соединения конденсаторов.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: