Логические элементы в электрических схемах

Логические схемы «ИЛИ» на транзисторах

На рис. 5, а приведена схема ИЛИ на транзисторах для положительной логики. Схема имеет два входа А и В и один выход. 

Логические элементы в электрических схемах

Рис. 5. Схема ИЛИ на транзисторах

Транзисторы типа n — p — n соединены параллельно и играют роль ключей. При наличии на входе сигнала 0 соответствующий транзистор закрыт напряжением смещения Есм; если на второй вход подан сигнал 1 с напряжением больше, чем Есм, то второй транзистор открыт и на выходе возникает сигнал 1. Схема ИЛИ для отрицательной логики (рис. 5, б) построена по такому же принципу, однако используются транзисторы типа р — n — р и изменена полярность сигналов и напряжений смещения и питания.

Разновидности и типы электрических схем

По стандарту ГОСТ 2.702-2011, документы этого типа должны содержать условные обозначения компонентов изделия, которое действует с помощью электроэнергии. Домашнему мастеру для решения типовых задач достаточно изучить 3 вида схем:

  • функциональную;
  • принципиальную;
  • монтажную.

«Структурные» и другие модификации чертежей применяют в комплекте документации для крупных объектов.

Функциональная

Этот вид схем используют для пояснения принципов работы системы. Функциональный элемент отмечают крупным прямоугольником. Внутри вписывают назначение блока: управление, согласование или др. Стрелки входов и выходов дополняют пояснениями о цепях питания, периферийном оборудовании.

Логические элементы в электрических схемах

Принципиальная

На этом чертеже указывают графическими обозначениями отдельные элементы, устройства, взаимные связи. При проектировании силовых линий можно применить сравнительно простую однолинейную схему. Принципиальную — используют для разработки сложных систем, содержащих разные виды цепей и приборов.

Логические элементы в электрических схемах

Монтажная

Этот документ упрощает выполнение монтажных работ. На схеме указывают не только типы компонентов, но и расстояния между ними. Сведения о длине цепей можно использовать для приобретения кабельной продукции. Специальными пометками обозначают особенности крепления, номиналы, последовательность рабочих операций.

Логические элементы в электрических схемах

Виды и типы электрических схем

В — Коллекторные электродвигатели постоянного тока: 1 — с возбуждением обмотки от постоянного магнита 2 — Электрическая машина с катушкой возбуждения В связке с электромоторами, на схемах показаны магнитные пускатели, устройства мягкого пуска, частотный преобразователь.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная. Главное найти большую плоскость, на которую её можно будет разложить. При внесении изменений в схему последовательность присвоения порядковых номеров может быть изменена.

Дефакто-виды промышленных принципиальных схем. Совмещенный способ изображения устройства Разнесенный способ изображения устройства Рисунок 5 Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под позиционным обозначением каждой составной части элемента или устройства допускается указывать в скобках обозначения зон или номера строк, в которых изображены все остальные составные части этого элемента или устройства см. Для изображения защитного проводника также имеется отдельный значок Провода бывают разные по виду, назначению, нагрузке, способу прокладки.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Приведем в качестве примера основные графические обозначения для разных видов электрических схем. Большинство схем, которые созданы по ЕСКД, конструкторами и инженерами предприятий просто уродливы.

Каждый провод шины должен быть иметь собственное наименование. Неудобство этих схем в том, что замучаешься листать такую схему.

Таблица обозначений всевозможных токонесущих линий. Это дубликат более раннего документа — ГОСТ 2. Поэтому я называю составление принципиальной схемы искусством.

Виды и типы электрических схем

Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы. Основные правила составления принципиальных схем: Разбейте устройство на функциональные части: питание конечные входные устройства и прохождение сигнала до решающего устройства конечные выходные устройства и сигналы к ним от решающего устройства решающее устройство обмен данными с другим оборудованием Хорошо если удастся изобразить эти части на отдельных листах Движение сигналов схемы всегда! Существует множество вариантов обозначения, здесь я приведу наиболее распространённый, который соответствует ГОСТ 2. Большая часть обозначений — графические.

Рисунок 7 5. Внутри групп устройства делятся по количеству полюсов, наличию защиты. При выполнении схемы на неполных листах должны выполняться следующие требования: — нумерация позиционных обозначений элементов должна быть сквозной в пределах установка; — перечень элементов должен быть общим; — при повторном изображении отдельных элементов на других листах схемы следует охранять позиционные обозначения, присвоенные им на одном из первых листов схемы. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
Как читать электрические схемы. Урок №6

О чем данная статья

Принципиальная электрическая схема — это самый краткий способ объяснить принципы работы устройства. Ведь описывать словами схемы, во-первых, трудоемко, а во-вторых, описание словами ведет к двоякому восприятию, тогда как любая схема жестко прописывает алгоритм работы.

На сегодняшний день, по разным оценкам, доля электромеханических реле, находящихся в эксплуатации, составляет от 70 до 80% от общего числа релейных устройств. Но с каждым днем количество микропроцессорных блоков релейной защиты растет, что приводит в шок специалистов эксплуатации, так как им приходится разбираться с работой новых устройств защиты. Данная реакция обусловлена в основном новизной и недоверием к блокам, а также необходимостью обучения и понимания работы микропроцессорных блоков релейной защиты. В процессе изучения работы блоков возникает проблема: для того чтобы разобраться, как работает блок, нужно для начала научиться читать логические схемы.

Популярные статьи  Однофазные выпрямители - схемы и принцип действия

В данной статье я попробую объяснить, как не бояться таких схем, как упростить процесс их чтения, на что обращать внимание. Я не обещаю, что вы сразу научитесь читать схемы (это вопрос практики), а просто поделюсь основными методами, которые когда-то для себя выработал

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Наименование Изображение
1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах.

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):гнездоштырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Наименование Изображение
Линия электрической связи, провода, кабели, шины, линия групповой связи
Защитный проводник (PE) допускается изображать штрихпунктирной линией
Графическое разветвление (слияние) линий групповой связи
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных
Линия электрической связи с одним ответвлением
Линия электрической связи с двумя ответвлениями
Шина (если необходимо графически отделить от изображения линии электрической связи)
Ответвление шины
Шины, графически пересекающиеся и электрически не соединенные
Отводы (отпайки) от шины

Подключение по схеме «И»

Диодный элемент «И» состоит из двух входов и выхода (Y). На вход диодной схемы может подаваться логическая единица (ей соответствует высокий уровень сигнала) или логический ноль — коммутация на общий провод («зем­ля»). Замкнутые ключи схемы формируют ноль на выходе. Единицу можно получить только в случае, если не на­жат ни один из них: высокий логический уровень на обоих входах дает высокий логический уровень на выходе.

Логические элементы в электрических схемахРис 3. Логический элемент «И», выполненный на двух диодах и подтягивающем резисторе

Для приведенной схемы диодного элемента «И» закрытое состояние обоих диодов возможно при наличии вы­со­ко­го уровня на обоих входах. Аналогичный результат, отсутствие тока через диоды, будет иметь место когда клю­чи не замкнуты

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТа Краткое описание
2.710 81 В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68 Требования к размерам отображения элементов в графическом виде.
21.614 88 Принятые нормы  для планов электрооборудования и проводки.
2.755 87 Отображение на схемах коммутационных устройств и контактных соединений
2.756 76 Нормы для воспринимающих частей электромеханического оборудования.
2.709 89 Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85 Схематические обозначения для оборудования, используемого в системах автоматизации
Популярные статьи  Схемы включения трансформаторов напряжения

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Вентили на полевых транзисторах

Логические элементы в электрических схемахРис 4. N-канальный транзистор закрыт, когда потенциал на затворе равен истоковому

В работе N-канального СMOS-транзистора используется 5-вольтовая логика: ключ на его основе окажется за­кры­тым, если на затвор прибора подать напряжение низкого уровня и открывается при подаче +5V. Напряжение на затворе управляет проводимостью между стоком и истоком «полевика», и этот факт раз­ра­бот­чи­ком схемы может использоваться для реализации заданных возможностей.

Логические элементы в электрических схемахРис 5. N-канальный транзистор откроется, если на затвор подать положительный потенциал

Стоит только изменить уровень напряжения на затворе транзистора, и он откроется, переключаясь в проводимое состояние. Если нулевой уровень запирает логическую схему, то перевести ее в противоположное (открытое) со­сто­я­ние можно только подав относительно истока положительное напряжение. Его уровень должен превышать оп­ре­де­лен­ный барьер — threshold voltage. Конструкция транзисторов СMOS-логики такова, что порог сра­ба­ты­ва­ния, как правило, выше 1,5 вольта.

Примечание. …24V для питания затворов.Логические элементы в электрических схемах

Логические сигналы

Наряду с цифровыми сигналами в цифровых устройствах действуют сигналы, появление которых связано с наступлением или не наступлением какого — либо события. Наличие или отсутствие таких сигналов и порождающие их условия связаны выражениями типа «если…, то ….» и другими логическими связями. Поэтому такие сигналы называются логическими. Это название связано с тем, что аналогичные условия между причиной и следствием являются предметом обсуждения и изучения в логике. Формальная логика — наука о законах и формах человеческого мышления — оперирует с высказываниями вне зависимости от их содержания, учитывая только их истинность или ложность. Истинные высказывания: «Электрический ток существует только в замкнутой цепи», «Архангельск расположен в северном полушарии», ложные: «Кит — теплолюбивое растение» «Ангара — приток волги». Высказывания могут быть простыми и сложными. Простое содержит только один факт, не зависящий от других фактов, т. е. сам о себе может быть истинным или ложным. В приведенных выше примерах высказывания — простые. Сложные высказывание содержит несколько простых высказываний, например: «Я пойду в кино, если не будет дождя и со мной пойдёт приятель». Введения в формальную логику ограниченного числа логических связок (они будут далее), допускающих строго определённое толкование, позволило однозначно представлять сложное высказывание совокупностью простых, а введением символов, обозначающих простые высказывания, — решать логические задачи математическими средствами. Их совокупность составляет содержание алгебры и логики, или булевой алгебры, названной так в честь её создателя — английского математика Джорджа Буля. В соответствии с ней истинному высказыванию (наступления события) приписывается, ставится в соответствии символ 1 (логическая 1), а ложному (ненаступлению событий) — символ 0 (логический 0). Необходимо отметить, что символы 0 и 1никакого отношения к числовому сигналу не имеют. Они лишь описывают качественное состояние события, и поэтому к ним неприменимы арифметические операции. В электрических цепях эти символы обычно представляются также, как аналогичные в цифровом сигнале: логическая 1 — высоким, а логический 0 низким уровнем потенциала. Рассмотрим высказывание: Автомат сработает когда будут нажаты кнопки К1 и К2 или нажата кнопка К3 и не нажата кнопка К4«. Здесь простые высказывания (состояния кнопок) внедрены в сложные высказывания (срабатывания автомата) с помощью союзов — связок И, ИЛИ, НЕ; состояние кнопок играют роль аргументов (переменных), над ними эти союзы осуществляют такие функциональные преобразования, которые формируют функцию — условие срабатывания автомата. Далее простое высказывание (событие) будем обозначать символом х, а сложное событие, являются функцией простых, — символом у. Из изложенного ранее следует, что булева алгебра оперирует с переменными, принимающие только два значения: 0 и 1, т.е. с двоичными переменными. Функция двоичных переменных, принимающая те же два значения, называется логической функцией (переключательной функцией, функцией алгебры логики). Логическая функция может быть выражена словесно, в алгебраической форме и таблицей, называемой переключательной таблицей или таблицей истинности.

Логический элемент «ИЛИ»

Логическое «ИЛИ», или «логическое сложение», представляет собой обработку сигналов по схеме параллельного соединения. Само название этого элемента говорит нам о принципе его работы. На рис. 1 приведена схема реализации обработки сигналов с помощью реле KL, а также логический элемент «ИЛИ», который логически повторяет схему.

Рассмотрим логический элемент «ИЛИ» подробнее, так как рассуждения, относящиеся к данному элементу, можно будет отнести и к другим элементам, рассматриваемым ниже. Как видно из обозначения элемента, у него есть входные сигналы, располагающиеся слева от элемента, и выходные сигналы, располагающиеся справа. Входные и выходные сигналы – это логические состояния данных связей. В логических схемах есть два логических состояния — «0» или «1». Логическое состояние «0» — это отсутствие сигнала, а логическое состояние «1» — наличие сигнала. Если провести аналогию со схемой «ИЛИ», выполненной на реле, то состояние логической «1» —это замыкание контакта, например, KL1. Для более глубокого понимания следует уточнить, что контакт KL1 замыкается при срабатывании какого-то реле, не обозначенного в данной схеме, т.е. контакт сообщает нам, в каком состоянии находится реле (в сработавшем или нет). Получается, что логическое состояние «1» входного сигнала KL1 элемента «ИЛИ» — это срабатывание реле, не обозначенного на схеме, а логическое состояние «0» — это несрабатывание реле.

Рис. 1. Логическое «ИЛИ»

На данном этапе мы должны запомнить:

  • В логических схемах у сигнала есть два состояния — «1» или «0».
  • Входной сигнал логического элемента есть результат состояния предыдущего элемента.
Популярные статьи  Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Логическая схемы «НЕ» (инвертор)

Логическая схема НЕ имеет один вход и один выход. Моделью схемы может служить электрическая цепь (рис. 6, а) с размыкающим контактом реле Р. 

Логические элементы в электрических схемах

Рис. 6. Схема НЕ (инвертор)

При срабатывании реле (сигнал 1 на входе) лампа не горит (сигнал 0 на выходе), при отпускании реле (сигнал 0 на входе) лампа горит (сигнал 1 на выходе). Таким образом, схема НЕ является инвертором, т. е. преобразователем сигнала одного вида в противоположный. 

Инверторы собирают на транзисторах по схемам, представленным для положительной логики на рис. 6, б и для отрицательной — на рис. 6, в. При наличии на входе сигнала 0 меньше Есм транзистор закрыт и на выходе возникает сигнал 1. Если на входе сигнал 1 больше Есм, транзистор открыт и на выходе сигнал 0.

Электрические цепи

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Заключение

Проанализировав несколько схем, вы со временем забудете о преобразовании логических элементов в релейно-контактные схемы и усвоите следующие положения:

  • сигнал есть — значит «1», сигнала нет — значит «0», и третьего не дано;
  • нельзя просто так взять и соединить вместе выходы двух логических элементов (кстати, почему?);
  • существуют и применяются другие логические элементы и другие триггеры, а не только те, о которых тут рассказано;
  • инверсный вход элемента «И» преимущественно используется для блокировки остальных входных сигналов;
  • все логические сигналы можно условно разбить на три группы: сигналы срабатывания (которые идут от компараторов или иных источников к главному выходу), сигналы разрешения (которые приходят на вход элемента «И» и разрешают пройти другому сигналу) и сигналы блокировки (которые приходят на инверсный вход элемента «И» и запрещают пройти другому сигналу);
  • элемент «2-НЕ-И», у которого все входы инверсные, можно заменить на элемент «2-ИЛИ-НЕ», и наоборот, элемент «2-НЕ-ИЛИ» можно заменить на элемент «2-И-НЕ».

Илья ИвановКомпания: НТЦ «Механотроника»Должность: Начальник отдела РЗА

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: