Магнитная цепь
Магнитной цепью называется устройство, отдельные участки которого выполнены из ферромагнитных материалов, по которым замыкается магнитный поток. Примерами простейших цепей могут служить магнитопроводы кольцевой катушки и электромагнита, изображенного на рис. 6.11, а. Электрические машины и трансформаторы, электромагнитные аппараты и приборы имеют обычно магнитные цепи более сложной формы.
Рис. 6.11 Магнитные цепи (а — неразветвленная, б — разветвленная)
Если магнитная цепь выполнена из одного и того же материала и имеет по всей длине одинаковое сечение, то цепь называется однородной.
Если же отдельные участки цепи изготовлены из различных ферромагнитных материалов и имеют различные длины и сечения, то цепь — неоднородная.
Магнитные цепи, так же как и электрические, бывают разветвленные (рис. 6.11,6) и неразветвленные (рис. 6.11,а).
В неразветвленных цепях магнитный поток Ф во всех сечениях имеет одно и то же значение.
Разветвленные цепи могут быть симметричными и несимметричными. Цепь, представленная на рис. 6.11,6, считается симметричной, если правая и левая части ее имеют одинаковые размеры, выполнены из одного и того же материала и если МДС I1W1 и I2W2 одинаковы. При невыполнении хотя бы одного из указанных условий цепь будет несимметричной.
Разобьем неразветвленную магнитную цепь, например, на рис 6.11, а на ряд однородных участков, каждый из которых выполнен из определенного материала и имеет одинаковое поперечное сечение S вдоль всей своей длины. Длину каждого участка L будем считать равной длине средней магнитной линии в пределах этого участка. Из сказанного выше следует, что магнитные потоки всех участков неразветвленной цепи равны, т. е.
и поле на каждом участке можно считать однородным, т. е. Ф= BS; поэтому
Где n — число участков цепи. Магнитное напряжение на любом из участков магнитной цепи
Где H — Напряженность, (измеряется в ампер на метр А/М).
B — Магнитная индукция (измеряется в теслах Тл).
L — Длинна средне силовой линии проходящей через центр поперечного сечения магнитопровода.
S — площадь поперечного сечения магнитопровода.
— Магнитная постоянная.
При заданном направлении тока в обмотке направление потока и МДС IW определяется по правилу буравчика.
Характеристики и принцип действия
Принцип действия МП заключается в том, чтобы увеличивать магнитное поле, направленное на вторичную обмотку электроустройства. Характеризующие величины МП напрямую зависят от состава сплава, применяемого для изготовления сердечников. Самыми эффективными усилителями считаются ферромагнетики.
Чтобы в сердечнике постоянно возрастала сила магнитного потока, нужно повышать силу тока и количество витков в катушке.
Следует понимать! Величина магнитного поля ограничивается характеристиками материала, из которого изготовлен сердечник.
Чтобы чётко выразить характеристики магнитопровода, их отображают графически на осях координат. Изменение величин выглядит в виде замкнутой кривой линии, называемой петлёй гистерезиса.
Магнитодвижущая сила (MMF)
Основная статья: магнитодвижущая сила
Подобно тому, как электродвижущая сила (ЭДС) управляет током электрического заряда в электрических цепях, магнитодвижущая сила (MMF) «управляет» магнитным потоком через магнитные цепи. Термин «магнитодвижущая сила», однако, неверен, поскольку это не сила и не что-либо движущееся. Возможно, лучше называть это просто MMF. По аналогии с определением ЭДС, магнитодвижущая сила F { Displaystyle { mathcal {F}}} вокруг замкнутого цикла определяется как:
F = ∮ ЧАС ⋅ d л . { displaystyle { mathcal {F}} = oint mathbf {H} cdot mathrm {d} mathbf {l}.}
MMF представляет собой потенциал, который гипотетический магнитный заряд выиграет, завершив цикл. Управляемый магнитный поток равен нет
ток магнитного заряда; он просто имеет такое же отношение к MMF, как электрический ток к EMF. (См. Подробное описание микроскопических источников сопротивления ниже.)
Единицей магнитодвижущей силы является ампер-виток (At), представленный устойчивым прямым электрический ток одного ампер протекающий в одновитковой петле электропроводящего материала в вакуум. Гилберт (Gb), установленный IEC в 1930 г. это CGS единица магнитодвижущей силы и является единицей немного меньшей, чем ампер-виток. Апартамент назван в честь Уильям Гилберт (1544–1603) английский врач и натурфилософ.
1 Гб = 10 4 π В ≈ 0.795775 В { displaystyle { begin {align} 1 ; { text {Gb}} & = { frac {10} {4 pi}} ; { text {At}} & приблизительно 0,795775 ; { text {At}} end {align}}}
Магнитодвижущую силу часто можно быстро рассчитать, используя Закон Ампера. Например, магнитодвижущая сила F { Displaystyle { mathcal {F}}} длинной катушки составляет:
F = N я { displaystyle { mathcal {F}} = NI}
куда N
это количество повороты ия это ток в катушке. На практике это уравнение используется для MMF реальных индукторы сN будучи номер намотки индукционной катушки.
Схемотехнические модели
Наиболее распространенный способ представления магнитной цепи — это модель сопротивления-сопротивления, которая проводит аналогию между электрическими и магнитными цепями. Эта модель хороша для систем, содержащих только магнитные компоненты, но для моделирования системы, содержащей как электрические, так и магнитные части, она имеет серьезные недостатки. Он не моделирует должным образом мощность и поток энергии между электрическими и магнитными доменами. Это связано с тем, что электрическое сопротивление рассеивает энергию, а магнитное сопротивление сохраняет ее и возвращает позже. Альтернативной моделью, которая правильно моделирует поток энергии, является гираторно-конденсаторная модель.
Преимущества использования электромагнитов
Главным преимуществом электрического магнита перед постоянным источником магнитного поля заключается в том, что он приводится в рабочее состояние под воздействием электрического тока. То есть, когда нужно оказать магнитное влияние на определённую часть пространства, ток включают. Это позволяет обеспечивать ритмичную работу ЭМ, что с успехом применяется в разных видах электро оборудования, приборов и устройств.
Советуем изучить — Токопроводящий клей и его использование
Электромагнит можно обнаружить в электрических счётчиках, сепараторных установках, трансформаторах, теле,- и аудиотехнике и других устройствах.
Мощные магниты установлены на мостовых кранах в цехах металлургических заводов и лебёдках предприятий по сбору металлолома.
Грузоподъёмные электромагниты
Одно из первых применений ЭМ – это динамики. Звуковое устройство в своей основе имеет электромагнит, который заставляет колебаться мембрану в звуковом диапазоне.
ЭМ используются в металлоискателях для обнаружения металлосодержащих предметов под землёй, в воде и различных массивах.
СПОСОБЫ УСТРАНЕНИЯ ВИБРАЦИИ ЯКОРЯ
- Включение электромагнита на выпрямленное напряжение.
- На стадии изготовления используют короткозамкнутый виток.
В сердечнике электромагнита делается прорезь и около 80% сечения охватывается короткозамкнутым витком, выполненным из материала с высокой электропроводностью. Магнитный поток делится на 2 составляющие и . В соответствии с законом Ленца появляется поток от короткозамкнутого витка. Причем, в левой части зазора потоки и складываются, а в правой части (охваченной короткозамкнутым витком) и вычитаются. Результирующие потоки оказываются сдвинутыми во времени на угол (векторная диаграмма). В результате значения магнитных потоков определяются:Зона, не охваченная короткозамкнутым витком:
Зона, которая охвачена короткозамкнутым витком:В результате получим зависимости тягового усилия во времени сдвинута относительно на . Из графика видно, что тяговое усилие больше механического. Таким образом, вибрация якоря отсутствует.
Рассмотрим условия, при которых полностью отсутствует вибрация.
при 1) 2) Реально =60-650, переменная составляющая – при этом вибрация якоря.
РАСЧЕТ ПАРАМЕТРОВ К.З. ВИТКА
- – площадь сечения, охваченная к.з. витком
- – площадь сечения, неохваченная к.з. витком
- – конечный зазор при полностью притянутом якоре.
КАТУШКИ ЭЛЕКТРОМАГНИТОВОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К КАТУШКАМ ЭЛЕКТРОМАГНИТОВ
- Надежное включение электромагнита в наихудших условиях, т.е. при пониженном напряжении и повышенной температуре.
- Температура не должна превышать допустимую для данного класса изоляции при повышенном напряжении.
- Минимальные габариты и экономичная технология в изготовлении.
- Механическая прочность.
- Влагостойкость, в некоторых случаях кислото и маслостойкость.
Конструктивно катушки делятся на: каркасные, бескаркасные, бандажированные, бескаркасные с намоткой на сердечник.
По способу включения: катушки тока (мало витков провода большого сечения), катушки напряжения (много витков провода малого сечения).ИСХОДНЫЕ ДАННЫЕ ПРИ РАСЧЕТЕ КАТУШЕК:
- род тока (“—” или “~”);
- ;
- требуемое значение М.Д.С.;
- допустимое отклонение напряжения;
- режим работы (продолжительный, кратковременный…);
- окружающая среда и ее предельная температура (воздух 400, масло 600)
В РЕЗУЛЬТАТЕ РАСЧЕТА ОПРЕДЕЛЯЮТСЯ:
- число витков ();
- сечение провода ();
- диаметр провода ();
- сопротивление катушки ();
- индуктивность катушки ();
- потребляемая мощность ();
- превышение температуры катушки над температурой окружающей среды ().
РАССМОТРИМ РАСЧЕТ КАТУШКИ НАПРЯЖЕНИЯ ЭЛЕКТРОМАГНИТА “—” ТОКА — длина и высота намотки — диаметр катушкиДано: +5%-30%(м.д.с.) – средняя длина витка – сечение провода
Коэффициент заполнения обмоточного пространства медью: Коэффициент укладки:, — диаметр провода по меди;1 — диаметр провода с учетом изоляции.
РАСЧЕТ КАТУШКИ НАПРЯЖЕНИЯ ЭЛЕКТРОМАГНИТА ПЕРЕМЕННОГО ТОКА
Дано: , , , конструктивные размеры. (*) — нечетное число витков, т.к. не учтено R Ток катушки Задаемся плотностью тока: А/мм2 – продолжительный режим А/мм2 – повторно-кратковременный А/мм2 – кратковременный Проверка уравнения (*) — 10%, если больше 10% делаем перерасчет.СПОСОБЫ УКЛАДКИ (НАМОТКИ) ПРОВОДОВ Существует три способа намотки:
1 – рядовая 2 – шахматная 3 – дикая На практике по диаметру и марке провода находим .
Число витковПосле этого определяем ток в катушке Сравниваем с заданной М.Д.С., если отличие >10% производим перерасчет (изменяя ). Определяем мощность, выделяемую в катушке: По формуле Ньютона установившееся превышение температуры:, — обобщающий коэффициент теплоотдачи с поверхности.
Для катушек такого типа Вт/м2. Полученное значение температуры сравнивается с допустимым для данного провода. Если , то принимается провод с более высоким уровнем изоляции, если и это не помогает, то такую катушку в продолжительном режиме использовать нельзя. Коэффициент включения: Будем смотреть, при каком ПВ или наша катушка работает без перегрева.
- Назад
- Вперёд
Законы Кирхгофа для магнитной цепи
При расчетах разветвленных магнитных цепей пользуются двумя законами Кирхгофа, аналогичными законам Кирхгофа для электрической цепи.
Первый закон Кирхгофа непосредственно вытекает из непрерывности магнитных линий, т.е. и магнитного потока; алгебраическая сумма магнитных потоков в точке разветвления равна нулю:
Например, для узла а на рис. 6.11,б
— Ф1 — Ф2 + Ф3 = 0
Второй закон Кирхгофа для магнитной цепи основывается на законе полного тока: алгебраическая сумма магнитных напряжений на отдельных участках цепи равна алгебраической сумме МДС:
Например, для левого контура и а рис. 6.11, бКак следует из закона Ома, для получения наибольшего магнитного потока при наименьшей МДС у магнитной цепи должно быть возможно меньшее магнитное сопротивление. Большая магнитная проницаемость ферромагнитных материалов обеспечивает получение малых магнитных сопротивлений магнитопроводов из этих материалов. Поэтому магнитные цепи электрических машин выполняют преимущественно из ферромагнетиков, а участки цепей из неферромагнитных материалов, то есть неизбежные или необходимые воздушные зазоры, делают, как правило, возможно малыми.
Схема устройства магнитной цепи двухполюсной машины с явно выраженными полюсами показана на рис. 6.12.
Рис. 6.12 Магнитная цепь электрической машины с явно выраженными полюсами
Плоскость 00′, проведенная через середины полюсов N и S и ось машины, делит магнитную цепь на две симметричные части. В каждой из них магнитный поток Ф/2 замыкается через полюсы П, полюсные наконечники ПН, воздушные зазоры, якорь Я и станину машины С. Магнитодвижущая сила создается током в обмотке возбуждения ОВ, расположенной на полюсах N и S. Из северного полюса N магнитные линии выходят и в южный полюс S входят.
Рис, 6.13. Магнитная цепь электрической машины с неявно выраженными полюсами
Схема устройства магнитной цепи двухполюсной машины с неявно выраженными полюсами показана на рис. 6.13. Здесь обмотка возбуждения заложена в пазы ротора Р — вращающейся части машины, укрепленной на валу. Как и в предыдущем случае, плоскость 00′, проведенная через середины полюсов N и S, делит магнитную цепь машины на две симметричные части, в каждой из которых магнитный поток Ф/2. Магнитный поток замыкается через ротор машины, воздушные зазоры и станину машины С, представляющую собой неподвижный наружный стальной цилиндр — статор машины.
3.20. Магнетики. Вещества в магнитном поле
Вещества, способные намагничиваться и влиять на направление вектора магнитной индукции внешнего поля B, называются магнетиками.
Способность намагничиваться — создание собственного магнитного поля в веществе, которое или усиливает, или уменьшает внешнее магнитное поле.
Собственные магнитные свойства вещества определяются электронами, связанными с атомами. Строение атома подразумевает наличие электрона e, вращающегося вокруг ядра. Магнитный момент электрона , то есть каждая орбита электрона в атоме обладает собственным магнитным моментом и создает собственное магнитное поле. В целом в веществе суммарные магнитные моменты электронов в атоме расположены хаотично и их сумма зачастую равна нулю.
Под действием внешнего магнитного поля собственные магнитные поля, созданные электронами, упорядочиваются. Это и есть явление намагниченности. Оно может сохраняться после снятия магнитного поля, а может и исчезать. У ферромагнетиков оно сохраняется, а у диа и парамагнетиков исчезает.
В результате поле равно: , где каппа — магнитная восприимчивость, которая определяется внешним воздействием, а и — магнитные моменты электронных орбит.
; — магнитная проницаемость.
.
Для разных веществ значение может принимать как положительные, так и отрицательные значения. В большинстве веществ собственные магнитные моменты атомов (молекул) не зависят друг от друга и хаотично расположены в пространстве. Если к такому веществу приложить внешнее поле, то собственный магнитный момент каждого атома стремится, как волчок, выровнять положение оси вращения вдоль силовых линий внешнего поля.
Bвне — индукция внешнего магнитного поля, Pm- собственный магнитный момент атома.
Изменение собственной оси вращения (собственного магнитного момента) относительно вектора магнитной индукции (внешнего поля) называется прецессией.
Собственный механический момент или количество движения Ls (спин)
Механические моменты электронов в атоме могут отличаться только направлением движения по орбите (вдоль и против часовой стрелки).
- Если внешнее магнитное поле затрачивает энергию на прецессию, то её результирующее магнитное поле ослабляется. Такие вещества называют диа–магнетиками: .
- В некоторых веществах внешнее магнитное поле не затрачивает энергию на прецессию, а разворачивает весь атом так, чтобы его собственное магнитное поле совпадало с внешним магнитным полем. Эти вещества -парамагнетики. Для них .
Парамагнетики
Стрелками укажем магнитные моменты отдельных атомов.
Ферромагнетики.
Для объяснения ферромагнетизма вводим понятие доменов. Домен — совокупность атомов с одинаковым направлением собственных магнитных полей. Подобные совокупности атомов требуют меньше энергии для образования доменов, т.е. энергетически более выгодны по сравнению с разрозненными атомами. В целом собственное магнитное поле вещества равно нулю. Под действием внешнего магнитного поля домены могут увеличиваться за счет других доменов вплоть до поглощения неориентированных доменов, то есть все пространство вещества заполняется доменами, ориентированными вдоль поля. При снятии внешнего поля обратной переориентации не происходит, так как это энергетически не выгодно. В этом случае магнитная восприимчивость составляет тысячи и десятки тысяч единиц. Оказывается, реакция вещества на воздействие внешнего магнитного поля носит нелинейный характер. Это определяется способностью собственных магнитных моментов переориентироваться во внешнем магнитном поле. Сначала идёт резкое изменение ориентации во внешнем магнитном поле, магнитные моменты ориентируются вдоль силовых линий магнитного поля. Дальнейшее увеличение магнитного поля не изменяет намагниченность, так как все магнитные моменты уже ориентированы вдоль поля. Зависимость результирующего магнитного поля в веществе в целом в зависимости от внешнего поля носит характер гистерезиса.
B1 — остаточная индукция. H1 — коэрцетивная сила.
B1 — в веществе остается собственное магнитное поле без внешнего магнитного поля H1 = 0, (так создаются постоянные магниты).
H1 — внешнее поле, необходимое для снятия собственной намагниченности, B1=0. Эта величина называется коэрцетивная сила.
Анализ петли гистерезиса см. в разделе “Сегнетоэлектрики”. Если коэрцетивная сила велика, то говорят, что ферромагнетик жёсткий, если мала — то мягкий.
Электромагниты и их применение
Вот некоторые из примеров, где они используются:
- Моторы и генераторы. Благодаря электромагнитам стало возможным производство электродвигателей и генераторов, которые работают по принципу электромагнитной индукции. Это явление было открыто ученым Майклом Фарадеем. Он доказал, что электрический ток создает магнитноее поле. Генератор использует внешнюю силу ветра, движущейся воды или пара, вращает вал, который заставляет двигаться набор магнитов вокруг спирального провода, чтобы создать электрический ток. Таким образом, электромагниты преобразуют в электрическую другие виды энергии.
- Практика промышленного использования. Только материалы, сделанные из железа, никеля, кобальта или их сплавов, а также некоторые природные минералы реагируют на магнитное поле. Где используют электромагниты? Одной из сфер практического применения является сортировка металлов. Поскольку упомянутые элементы используются в производстве, с помощью электромагнита эффективно сортируют железосодержащие сплавы.
- Где применяют электромагниты? С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.
Советуем изучить — Как наносится гальваническое покрытие на производстве и в домашних условиях
Магнитные цепи и их расчет
Магнитной цепью или магнитопроводом называется путь, по которому замыкается магнитный поток. Этот путь может проходить целиком по воздуху.
Рисунок 1. Примеры магнитных цепей |
На рисунке 1, а показан соленоид. Магнитная цепь здесь проходит через воздух. Магнитное сопротивление воздуха очень велико, поэтому даже при большой намагничивающей силе магнитный поток мал.
Для увеличения магнитного потока в состав магнитной цепи вводят ферромагнитные материалы (обычно литая или электротехническая сталь), имеющие меньшее магнитное сопротивление.
На рисунке 1, б представлен прямой электромагнит с разомкнутым сердечником. Магнитные линии только небольшую часть своего пути проходят по стальному сердечнику, большую же часть своего пути они проходят по воздуху. Полюсы электромагнита определяются при помощи «правила буравчика».
Подковообразный электромагнит, изображенный на рисунке 1, в, представляет магнитную цепь с лучшими условиями для прохождения магнитного потока. При такой конструкции поток большую часть пути проходит по стали и меньшую часть от полюса N до полюса S по воздуху.
На рисунке 1, г представлена конструкция магнитной цепи, применяемая в электромашиностроении и приборостроении. Между полюсами электромагнита помещается стальной якорь. Большую часть своего пути магнитные линии проходят по стали и только очень малую часть (от нескольких долей миллиметра до 2–3 мм) проходят по двум воздушным промежуткам.
Трансформаторы имеют замкнутый стальной сердечник (рисунок 1, д). Сердечники трансформаторов собираются из нескольких частей, но во время сборки принимают меры к тому, чтобы воздушные зазоры между отдельными частями практически были равны нулю.
До сих пор мы не говорили о том, что магнитный поток, созданный намагничивающей силой, не весь замыкается по тому пути, который ему предназначен. Помимо рабочего магнитного потока, существует магнитный поток рассеяния, который замыкается вне того места, где используется рабочий поток. На рисунке 1, б, в, г, д показаны потоки рассеяния.
Таким образом, общий магнитный поток, который должна создать обмотка возбуждения электромагнита, равен сумме рабочего потока и потока рассеяния.
Расчет магнитной цепи, казалось бы, можно производить по формуле:
Но если вспомнить, что относительная магнитная проницаемость µ для ферромагнитных тел непостоянна и зависит от многих причин, то становится ясно, что этой формулой можно пользоваться лишь в том случае, когда в состав магнитной цепи входят только немагнитные тела (в том числе и воздух), для которых µ есть заранее заданная величина.
На практике для расчета магнитных цепей предпочитают пользоваться графическими методами решения.
Расчет магнитной цепи производят в следующем порядке. Задаются необходимой величиной магнитного потока. Разбивают магнитную цепь на участки, имеющие одинаковые поперечные сечения и однородный материал, и для каждого участка определяют величину магнитной индукции по формуле:
Расчет магнитных цепей
Теперь внимание. Мы можем провести прямую аналогию и рассматривать магнитный поток в цепи, как характеристику электрической цепи — силу тока
Рассмотренное второе следствие означает, что для магнитной цепи, также как и для электрической, справедливо первое правило Кирхгофа. Отсюда можно лаконично перейти к закону полного тока, который в рамках классического магнетизма будет выглядеть следующим образом (приготовьтесь, немного математики):
Также мы помним, что напряженность магнитного поля связана с магнитным потоком следующим образом:
Руководствуясь приведенным законом полного тока и определением напряженности через магнитный поток, мы можем переписать закон полного тока относительно магнитного потока.
Откуда в уравнении появился и что символизирует аргумент l? Все просто. Так как мы рассматриваем контур L, то логично предположить, что на разных его участках наши показатели могут принимать разные значения: площадь сечения может изменяться, как и магнитная проницаемость или магнитный поток.
Полученное уравнение можно рассматривать как второй закон Кирхгофа, который, напомню, звучит следующим образом:
Для полной ясности, проведем аналогию между электрическими и магнитными цепями, а также их величинами.
Именно проведя аналогичное представление для электрической цепи, мы можем рассчитывать магнитные цепи. Для того, чтобы это сделать, следует:
-
Мысленно разбить сердечник на отдельные однородные участки (непрерывные, с постоянным сечением) без разветвлений и определить их магнитные сопротивления;
-
Построить эквивалентную электрическую цепь, последовательно заменяя участки магнитной цепи участками электрической с электрическими сопротивлениями, а также заменяя индуктивности (катушки) на источники ЭДС;
-
После обозначения заданных сопротивлений и ЭДС, можем вычислить в общем токи в элементах электрической цепи;
-
Произвести замену полученных величин согласно таблице (токи в потоки, ЭДС в МДС [Магнитодвижущую силу / Ампер-витки], а электрическое сопротивление в магнитное сопротивление).
Именно таким образом, мы можем рассчитать характеристики магнитной цепи. Полученные результаты позволяют, например, вычислить индуктивности.