Уменьшение — переходное сопротивление
Уменьшение переходного сопротивления у контактов достигается увеличением давления между контактными поверхностями, а также такой конструкцией контактов, при работе которых происходит скольжение с перекатыванием ( притирание) подвижного контакта относительно неподвижного.
Разъем типа ШР. |
Для уменьшения переходного сопротивления штыри и гнезда серебрят или золотят. Золочение применяется для ответственной аппаратуры, работающей в сложных климатических условиях, особенно, если во время эксплуатации контакты длительное время находятся в замкнутом состоянии. При таких условиях на серебре могут образоваться пленки окислов за счет действия сероводорода, что может привести к нарушению электрического контакта, если напряжение в электрической цепи мало.
Конструкция анодного заземлителя кабельного типа и варианты применения. а — конструкция, б и в — поверхностный и глубинный варианты применения. / — анодный заземлитель. 2 -коксовая засыпка. 3 — анодный кабель. 4 — полиэтиленовая труба. 5 — колонка. 6 — монтажная панель. 7 — опознавательный знак. 8 — герметизирующий узел.| Глубинное анодное заземление скважинного типа из обсадных или буровых труб. / — труба. 2 — соединительная муфта. 3 — заглушка. 4 — кондуктор. 5 — соединительный кабель. 6 — глинистый раствор. 7 — контактный узел. 8 — анодный кабель. |
Для уменьшения переходного сопротивления используют коксовую мелочь.
Для уменьшения переходного сопротивления контактные поверхности покрывают оловом или изготовляют из серебра. На работу контактного соединения очень неблагоприятно влияет дуга — электрический разряд между расходящимися контактами цепи при сколько-нибудь значительных токе и напряжении.
Для уменьшения переходного сопротивления в размыкающихся контактах их конструируют таким образом, чтобы замыкание и размыкание сопровождалось скольжением одной контактной поверхности по другой, стирая образующуюся пленку окиси. Контакты проводов из латуни, бронзы и меди защищают от окисления лужением тонким слоем олова или сялава свинца и олова. В ряде случаев для этой цели используют серебро или же делают серебряные контакты.
Основные характеристики резисторов, выпускаемых на автоматизированных линиях. |
Для уменьшения переходного сопротивления между углеродистым слоем и металлической арматурой края неуглероженных оснований покрывают суспензией коллоидного графита или молекулярного серебра, создавая промежуточный контактный слой.
Контакты автомата типа ВАБ, спаиваемые методом погружения в расплавленный припой. |
Для уменьшения переходного сопротивления между пластинами основание контакта пропаивают серебряным припоем методом погружения. В целях лучшего затекания припоя в зазоры между пластинами спаиваемые поверхности пластин подвергают гальваническому серебрению. Процесс пайки ведется следующим образом. В ванне под слоем флюса, состоящего из буры, расплавляют серебряный припой, в который погружают основание контакта. Контакт выдерживают в ванне до момента достижения температуры, при которой серебряный припой легко стекает с контакта. Передержка контакта в расплавленной ванне приводит к сильному оплавлению контакта, то же имеет место и при сильном перегреве припоя.
Для уменьшения переходного сопротивления нажатие контактов обеспечивается пружинами.
Для уменьшения переходного сопротивления контактов на концы пластин-контактов наносится слой серебра, золота, родия или других благородных металлов. Этот слой выполняет также роль немагнитной прокладки, не допускающей залипания контактов.
Для уменьшения переходного сопротивления щетки иногда устанавливают наклонно ( навстречу движению) и ставят несколько параллельных щеток на одно кольцо.
Для уменьшения переходного сопротивления контактов на концы пластин-контактов наносится слой серебра, золота, родия или других благородных металлов. Этот слой выполняет также роль немагнитной прокладки, не допускающей залипания контактов.
Испытания масляных выключателей
Испытаниям должен предшествовать комплекс подготовительных мероприятий: изучена электрическая часть испытуемой электроустановки; • заводская документация, касающаяся конструктивных особенностей оборудования, объема и норм испытаний; • получены данные о качестве масла, залитого в оборудование, подлежащее испытанию. Проведению испытаний должен предшествовать тщательный наружный осмотр испытуемого объекта. Если в результате осмотра будут обнаружены дефекты, которые могут вызвать повреждение оборудования или испытательной аппаратуры, испытания разрешается проводить лишь после устранения этих дефектов. Заключение о пригодности оборудования к эксплуатации производится на основании сравнения данных, полученных при испытании, с браковочными нормами и анализа результатов всех проведенных эксплуатационных испытаний и осмотров. Оборудование, забракованное при внешнем осмотре, независимо от результатов испытания, должно быть заменено или отремонтировано.
Измерение сопротивлений мультиметром
В отличие от ёмкостей сопротивление умеет измерять каждый тестер. Это простая операция. Фокус в том, что механические модели работают с напряжением без батарейки, а для оценки параметров резисторов нужен некий заряд для формирования вспомогательного напряжения. Разумеется, ограничения возможно обойти путём создания резистивного делителя, пользуясь внешним источником – к примеру, розеткой. Отличие цифровых мультиметров – без подпитки приборы не работают.
Цифровой мультиметр
Минусом современных моделей считается ограниченность шкалы. Хочешь сопротивление резистора мультиметром измерить, а натыкаешься на сплошные трудности. Максимальный предел не превышает 2000 кОм. Это лишь 2 МОм, радиолюбители знают, что это далеко не верхняя граница для достойного резистора. Сопротивление изоляции электрических приборов должно составлять 20 МОм. Проверить его качество при помощи рядового мультиметра не получится. Первое правило измерения сопротивления мультиметром: «Размер шкалы соответствует измеряемому значению».
Понять соответствие непросто. В былые времена номинал проставлялся на корпусе резистора. Для слишком малых моделей сложно разглядеть цифры. От габаритов номинал не зависит. Приходится гадать: малютка на пару Ом или МОм. Разница в миллион раз, ошибиться не хочется. Большинство резисторов сегодня маркируются цветными полосами. Не стоит учить таблицу наизусть. Советуем пользоваться простой методикой: найти в интернете онлайн-калькулятор для решения собственных задач. Подобный находится по адресу https://www.chipdip.ru/info/rescalc/.
Будет интересно Что такое газоразрядные индикаторы
Все оформлено в виде таблицы, причём показано, что резисторы маркируются четырьмя или пятью полосами. Допустимые цвета приведены в строках сформированной авторами сайта таблицы. Номера полос идут по столбцам. Выбор нужной гаммы происходит в виде кликов по радиобоксам. Для каждой полосы возможен единственный цвет. В верхней части текущие изменения отображаются на схематически нарисованном резисторе, что добавляет удобства. Обычно крайняя полоса толще остальных, на практике это невозможно заметить.
Тогда стараются достать схему прибора, чтобы сориентироваться. Если примерный номинал известен, ошибиться сложно. Во вторую очередь смотрят на полосы. К примеру, золотой и серебристый цвет встречаются исключительно с крайней тонкой полосы. На практике отличить от жёлтого и серого сумеет редкий человек. Без опыта слишком сложно. Потребуется завести на калькулятор оба варианта (слева направо и справа налево), потом начинать измерения мультиметром с максимального из полученных номиналов.
Итак, для получения значения в онлайн-калькуляторе потребуется проставить все полосы. В режиме реального времени на Чип&Дип работать не получится – маленький недостаток. В результате усилий в текстовом поле появляются:
- Номинал резистора, сопротивление в стандартных единицах. К примеру, омах.
- Через запятую идёт допуск на точность. Худшие резисторы показывают отклонение в 10% (в обе стороны по отдельности). В результате разброс номиналов сопротивлений сильный. Поэтому требуется проверка сопротивления мультиметром.
Форма калькулятора не лучшая, зато находится на сайте известного магазина Чип&Дип, где возможно заказать нужные детали. Сообразно найденной величине выставляется шкала мультиметра с запасом. Допустимо, для резистора на 10 кОм предел составляет 20k. Напоминаем, что на лицевой панели группа шкал измеряющих сопротивление помечается греческой буквой омега Ω.
Цель измерений
Для количественной оценки рассматриваемого параметра были разработаны специальные методики, предполагающие измерение металлосвязи в зоне контакта элементов заземляющей системы. Проводимые при этом испытания ставят своей целью:
- проверку исправности проводников, соединяющих отдельные элементы заземления (включая систему выравнивания потенциалов);
- оценку состояния их изоляционного покрытия;
- выявление факта наличия или отсутствия потенциала на заземлённых частях электроустановок.
Для измерения параметров металлосвязи к работе должны привлекаться специалисты лабораторий, имеющих право на проведение таких испытаний (владеющие соответствующим сертификатом).
Переходное сопротивление контактов и влияющие на него факторы
Переходное сопротивление контактов или, иначе говоря, сопротивление непосредственно зоны контакта — величина, которая может быть математически выражена отношением падения напряжения на соединении к протекающему через него ток (ΔU/I).
Значение переходного сопротивления (далее по тексту — ПС
) — очень важный качественный показатель состояния любого контактного соединения, является величиной нормируемой, максимально допустимое значение которой составляет 0,05 Ом.
Рассмотрим здесь основные факторы, влияющие на величину ПС
контактных соединений.
Площадь поверхности соприкосновения контактируемых проводников
. Большее ее значение снижаетПС соединения. В свою очередь, площадь поверхности зависит от силы воздействия (нажатия) поверхности одного проводника на поверхность другого.
Кроме того, площадь поверхности соприкосновения зависит от гладкости поверхностей соединяемых проводников; так, по понятным причинам, площадь соприкосновения проводников, имеющих шероховатые поверхности будет меньше площади соприкосновения проводников аналогичного сечения с плотно “подогнанными” гладкими поверхностями.
Многим, даже достаточно далеким от электротехники читателям известно значение выражения “плохой контакт”; во многих случаях его возникновение обусловлено именно упомянутыми выше факторами.
Степень окисления
контактируемых поверхностей соединяемых проводников. Пленка окиси, независимо от материала изготовления проводника имеет значительно большее электрическое сопротивление.
Особенно сильно подвержены окислению проводники из алюминия. Для сведения: довольно быстро образующаяся на воздухе пленка их окиси имеет удельное сопротивление 1012 ом*см.
Следует иметь ввиду, что интенсивность окисления проводников во многом зависит от температуры контакта; при его нагреве этот процесс протекает значительно быстрее, существенно увеличивая ПС
контактного соединения.
Электрохимическая совместимость материалов
. Этот влияющий наПС соединения фактор тесно связан с предыдущим. При соединении электрохимически несовместимых проводников, поверхность соприкосновения представляет собой контакт двух окислов, имеющих высокое значениеПС .
Показательным примером такой несовместимости являются медные и алюминиевые проводники: недопустимость их прямого соединения обусловлена повышением температуры контакта, что нередко может представлять собой потенциальную угрозу возникновения пожара.
Учитывая перечисленные факторы, влияющие на ПС
контактных соединений следует добавить, что в целях его снижения далеко не последнее место занимает соответствие видов соединительных изделий материалам проводников и условиям эксплуатации.
Методика измерения
Измерять переходное сопротивление необходимо при установленных значениях тока и напряжения. Как определить эту величину? Обычные приборы в виде омметра или тестера не подойдут, так как они пропускают через электрическую цепь при напряжении до 2 В токи 0,5–1 мА. При таких небольших нагрузках большинство мощных устройств не могут предоставить паспортные данные этого явления. Определение его возможно, если собрать обычную схему измерения. Она предоставлена ниже:
Балластное противодействие (R) приостанавливает ток через контакты, а уменьшение напряжения на них при определенном токе дает возможность определить переходное сопротивление по формуле. Подбирая элементы в схему необходимо вводить при тестировании токи, которые предоставляет таблица ниже (данные указываются с учетом нормы, ПУЭ и ГОСТ):
Рабочий ток контактов реле, А | Ток проверки контактного сопротивления, мА |
0,01 – 0,1 | 10 |
0,1 – 1 | 100 |
>1 | 1000 |
Вместо предоставленной выше схемы измерения можно использовать специальные приборы, например Микроомметр Ф4104-М1 или же импортный аналог C.A.10. О том, как измерить данное значение, показывается на видео:
Важно отметить, что результаты тестирования зависят от того, насколько контакты загрязнены и какая у них температура. Поэтому проводя измерения необходимо выбирать такой ток и напряжение, которые будут соответствовать определенным условиям употребления реле в указанной схеме
Какое должно быть переходное контактное сопротивление? Максимально допустимое значение этой величины является нормируемым и равняется 0,05 Ом.
При установлении больших нагрузок не стоит забывать про первоначальное высокое противодействие контакта. После коммутации оно существенно уменьшается под воздействием электрической очистки. Если устройство применяется в сигнальных цепях, то этой величиной можно пренебречь.
Вот и все, что хотелось рассказать вам о том, что такое переходное сопротивление контактов, какое у него допустимое значение и как выполняются измерения величины. Надеемся, информация была для вас полезной и интересной!
Будет полезно узнать:
- Как измерить сопротивление изоляции кабеля
- Способы соединения электрических проводов
- Как определить короткое замыкание в сети
Методика измерения
Гост 21534-76 нефть. методы определения содержания хлористых солей (с изменениями n 1, 2, 3, с поправкой)
Существует регламент измерений Rп для коммутационных устройств: автоматических выключателей, разъединителей, сборных и соединительных шин и другой аппаратуры.
Методы измерений следующие:
- метод непосредственного отсчёта;
- способ вольтметра-амперметра;
- измерение статической нестабильности Rп.
При первом способе тестирования применяют приборы, позволяющие выполнять непосредственный отсчёт с учётом погрешности (±10%). При этом методе измеряют сопротивление контактного соединения.
Важно! Тестируемые поверхности контакт-детали не зачищают и не обрабатывают перед измерением. Контакт-деталь сочленяют (замыкают) и присоединяют к выводам приборов. Размыкание контактов и передвижение измерительных проводов недопустимы
Размыкание контактов и передвижение измерительных проводов недопустимы.
При помощи метода вольтметра-амперметра определяют величину падения напряжения (при установленном значении тока) на тестируемом переходе.
Схема измерительной установки
Все погрешности измерений приборов, входящих в схему, должны быть в пределах ±3%. Значение R1 подбирают на два порядка больше, чем предполагаемое измеряемое сопротивление.
Расчёт результатов измерений выполняют по формуле:
Rп = UPV2/IPA,
где:
- UPV2 – результат, полученный на вольтметре PV2, В;
- IPA – ток, измеряемый амперметром PA, А.
Статическую нестабильность Rп определяют, находя величину среднеквадратичного отклонения Rп по результатам многочисленных замеров.
Внимание! Переходное сопротивление замеряют одним из методов, рассмотренных выше. Контакт-деталь размыкают и заново смыкают перед каждым тестированием, снимая электрическую нагрузку. Необходимый результат получают, используя формулы на рис
ниже
Необходимый результат получают, используя формулы на рис. ниже.
Формулы для расчёта результата методом статической нестабильности
Погрешность результатов, полученных при этом методе, лежит в пределах ±10% (с вероятностью 0,95).
Перечень приборов, применяемых для измерений
Измерения Rп переходов проводят и микрометром ММR-610. В результате работы тестируют сопротивления постоянному току контактов автоматов и других соединений. Проводят два вида измерений:
- однонаправленным током;
- двунаправленным током.
В первом случае не отображается величина активного сопротивления R, зато этот метод убыстряет процесс измерений там, где нет внутренних напряжений и сил электростатики. Во втором случае прибор устраняет погрешности (ошибки), возникающие от присутствия в тестируемой конструкции таких сил и напряжений.
Микроомметр MMR – 610
Полученные в результате измерений (проверки) данные записываются в протокол, согласно ПУЭ-7 п.1.8.5. Протокол хранится совместно с паспортами на оборудование.
Образец протокола проверки
Почему возрастает переходное сопротивление?
Под термином «контактное соединение» скрываются два металлических элемента, соприкасающиеся между собой. Даже если их отполировать до зеркального блеска, от микроскопических бугорков избавиться не удастся. Площадь соприкосновения этих шероховатостей может меняться под воздействием внешних причин: например, разболталось винтовое соединение – и пластины удалились друг от друга, поднялась температура, и из-за расширения металла поверхности сильнее прижались друг к другу…
На металлические предметы постоянно действует вибрация, перепады температур. Корпуса и другие элементы могут подвергаться случайным механическим повреждениям. Наконец, влага, содержащаяся в воздухе, вызывает коррозию металла, что также отрицательно сказывается на качестве креплений. Всё это приводит к снижению площади соприкосновения металлических поверхностей, в результате чего растёт сопротивление.
Если вовремя не заметить подобные отклонения, возможны многочисленные ЧП: от поражения человека током при касании металлических деталей до возгораний или выхода из строя ценной аппаратуры.
На величину сопротивления влияет и состояние контактов: как известно, содержащийся в воздухе кислород постепенно окисляет металлы, причём скорость образования окисных плёнок зависит от вида металла. Так, проводники из алюминия окисляются быстрее, чем медные, а значит, при прочих равных условиях, сопротивление в них будет расти тоже быстрее.
Нюансы
Измерение металлосвязи проводится сразу после монтажа, прямо перед пуском и началом эксплуатации, а затем, с периодичностью в 3 года, при проведении плановых испытаний и обслуживания. Вместе с проверкой, а также при смене времени года, когда возможны подтапливания и излишняя влажность, проверяют сопротивление изоляции кабелей и электрических машин.
Проверить качество контакта и измерить его переходное сопротивление с помощью простого бытового мультиметра, типа DT830 и подобных не получится. В области малых сопротивлений они либо не измеряют вообще (до десятых, но не сотых Ома), а одно только сопротивление между щупами у них доходит до 1 Ома, а иногда и превышает. О точности здесь говорить не приходится.
Иногда, чтобы измерить качество контакта, не нужны приборы, так как очевидно его разрушение. В крайних случаях доходит до того, что можно измерить его температуру рукой, если он греется — значит нужна его профилактика и последующие замеры и проверка милиомметром.
Напоследок рекомендуем просмотреть видео, на котором наглядно показывается, как проверяют наличие металлосвязи прибором:
Проверка металлосвязи очень важна для безопасности жизнедеятельности сотрудников предприятия и жильцов дома. Из-за плохого заземления в розетках или его полного отсутствия есть вероятность появление потенциала на корпусе прибора. А когда человек к нему коснется, произойдет либо электротравма, либо непоправимое. Надеемся, предоставленная информация была для вас полезной и интересной!
Рекомендуем также прочитать:
- Как проверить работоспособность дифавтомата
- Измерение сопротивления заземления
- Для чего нужна нулевая шина
- Как пользоваться мегаомметром
Что это такое?
Сопротивление, возникающее в зоне соприкосновения контактных поверхностей, при преодолении током точек касания, носит название переходного сопротивления контактов. Другими словами – это скачкообразное увеличение активного сопротивления в результате прохождения тока через контактное пятно. Математически такое явления можно выразить как отношение падения напряжения на контактах к протекающему через них току: ΔU/I
Как видно из формулы данная величина обратно пропорциональна силе контактного нажатия: Rn = ε/F, где ε – коэффициент, зависящий от физических свойств материала и чистоты обработки поверхности. Эту зависимость можно продемонстрировать на графике (рис. 1).
Рис. 1. График зависимости от приложенной силы нажатия
Нагревание контактных поверхностей – одна из причин быстрого их износа. Поэтому наиболее качественным соединением считается такое, для которого сопротивление контактного перехода является самым низким. В идеале оно должно равняться нулю. Но в силу ряда причин достичь такого значения на практике невозможно.
Причины возникновения
Для сплошного проводника справедлива формула: R = ρ * ( l / S ), где ρ – удельное сопротивление, l – длина, S – сечение проводника. Казалось бы, решение очень простое – надо увеличить площадь контактных площадок в конструкции электрического аппарата. К сожалению, такое усовершенствование не решает задачи кардинально. И дело даже не в том, что применять закон Ома к плоскостным контактам следует с учётом площади прикосновения поверхностей. Оказывается, что увеличение контактной площадки не сильно увеличивает площадь контактного пятна.
Если посмотреть под микроскопом на поверхность плоской контактной площадки, то можно заметить неровности (рис. 2). Касание контактов происходит лишь в некоторых точках. Даже тщательная шлифовка мало помогает. Дело в том, что в результате замыкания и размыкания контактов образуется искра (электрическая дуга), которая увеличивает неровности контактных поверхностей.
Рис. 2. Структура плоских контактных площадок
Обратите внимание на то, как увеличивается контактное пятно под действием силы нажатия (рисунок справа). Это объясняет причину зависимости сопротивления контактного перехода от нажатия, (график такой зависимости представлен на рисунке 1)
От чего зависит переходное сопротивление контактов?
Мы выяснили, что от площадей соприкасаемых поверхностей мало что зависит. На нагрев участка механического соединения влияют и другие явления. Например, окисление меди приводит к повышению температуры нагрева на скрутках соединительных проводов. Аналогичный процесс происходит также при соединении алюминиевых проводников.
В результате окисления проводников на их поверхностях образуется тонкая оксидная плёнка. С одной стороны, наличия пленок препятствует проникновению кислорода вглубь металла, предотвращая дальнейшее его разрушение, но с другой стороны они являются ещё одной причиной роста переходных сопротивлений.
Когда медь окисляется, то на поверхности контактной площадки образуется устойчивая плёнка. А это всегда приводит к увеличению сопротивляемости перехода. Устранить дефект можно путём протирания контактов спиртом. Регулярная процедура чистки помогает содержать коммутационные устройства в актуальном состоянии.
Переходное сопротивление — контактное соединение
Переходное сопротивление контактного соединения ( контакта) зависит от температуры нагрева контактных деталей и степени его окисления. Повышение переходного сопротивления с повышением температуры контакта объясняется увеличением удельного электрического сопротивления материала контакта.
Переходное сопротивление контактных соединений следует измерять взрывозащищенными приборами в соответствии с требованиями ПУЭ.
Зависимость переходного сопротивления медных контактов от температуры. |
Переходное сопротивление контактного соединения в силовой степени зависит от окисления контактной поверхности, которое может привести к увеличению переходного сопротивления в десятки и сотни раз.
Переходное сопротивление контактного соединения при температуре 70 не должно превышать более чем на 20 % сопротивления целого участка шины той же длины. Стабильность соединения достигается установкой под гайку каждого болта пружинящих шайб, которые применяются для медных и стальных шин при резких изменениях температуры или при наличии вибрации, а для алюминиевых шин — во всех случаях.
Переходное сопротивление контактного соединения не должно заметно превышать сопротивления цельного участка шины ( или провода) такой же длины.
Измерение переходных сопротивлений контактных соединений производится микроомметрами или контактомерами, т.е. специальными приборами для измерения малых сопротивлений. Эти приборы имеют специальные контактные наконечники щупов, которые прижимаются к токопроводящим элементам с обеих сторон проверяемого контактного соединения. Со стороны проверяемого сопротивления присоединяются потенциальные наконечники, с внешней стороны — токовые наконечники щупов. Обозначения потенциальных ( П) и токовых ( Т) наконечников нанесены на рукоятки щупов. Оценка качества контактного соединения производится сопоставлением значения сопротивления участка с контактным соединением со значением сопротивления токоведущего элемента на участке, длина которого равна участку с проверяемым контактным соединением.
Большая стабильность и малое переходное сопротивление контактного соединения, осуществленного посредством оси, подтверждаются длительным опытом эксплуатации.
Соответственно изменению действительной площади соприкосновения контактов изменяется переходное сопротивление контактного соединения.
Объективным и прямым методом контроля качества контактного соединения является измерение величины переходного сопротивления контактного соединения или падения напряжения на нем и сравнение полученных данных с нормативными. Наряду с этим контактное соединение осматривают, используя в необходимых случаях лупы, а также измеряют штриховыми инструментами.
Значения коэффициента. |
Из ( 8 — 20) следует, что при неизменной общей площади соприкасающихся поверхностей переходное сопротивление контактного соединения или контакта тем меньше, чем больше контактное давление, так как от него зависит их действительная площадь соприкосновения деталей.
Необходимо также измерять омическое сопротивление обмоток встроенных ( втулочных) трансформаторов тока на всех отпайках, обмоток реле, переходных сопротивлений контактных соединений, недоступных для осмотра, и отдельных контактных соединений, вызывающих сомнение в их качестве
Особое внимание надо уделять штепсельным и скользящим контактным соединениям, например контактам, с помощью которых вторичные элементы тележки ячейки КРУ соединяются со вторичными элементами, расположенными в неподвижных отсеках.
К расчету проводника, проходящего через фарфоровый изолятор. |
Количество тепла, выделяющееся в 1 сек в контактном соединении или в контакте, равно I2RK, где / — величина тока, а Кк — переходное сопротивление контактного соединения или контакта. Одновременно с процессом нагрева идет процесс охлаждения путем отдачи тепла в окружающее пространство и прилегающим менее нагретым металлическим частям. Температура контактного соединения или контакта установится после того, как количество тепла, выделяющееся в нем, будет равно количеству отдаваемого тепла.