Развитие ветроэнергетики в мире

Отрицательные стороны использования

Несмотря на безопасность и полную нейтральность ветроэнергетики для окружающей природы, в мире то и дело раздаются протесты против этой отрасли. Причем, наряду с действительно проблемными моментами, которые следовало бы корректировать, звучат абсолютно абсурдные мотивы. Так, в США активно выступают против использования ветряков орнитологи. Их аргументы звучат так, что пролетающие птицы страдают от вращающихся лопастей. Существуют и другие, не менее странные и порой нелепые утверждения.

При работе ветряки издают некоторый шум, но он не настолько силен, как это утверждают противники. Понятно, что эти организации и объединения работают на конкурентов, производителей электроэнергии другими способами. Ведется борьба за рынок, в которой все средства хороши. Тем не менее, больших успехов пока эти действия не возымели, ветроэнергетика живет и активно развивается.

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

Энергия из спирта и навоза: преимущества и недостатки биотоплива

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как устроена самая мощная в мире приливная турбина

Ветроэнергетика в России

Размер российского ветроэнергетического рынка невелик и составляет менее 1% от мирового. Россия является единственной крупной экономикой мира, в которой ветроэнергетика только начинает делать первые шаги. Но есть и положительные тенденции — общая установленная мощность ВЭС в нашей стране составляет более 1 ГВт, причем за прошедший 2020 год ввели в эксплуатацию ряд новых ветроэнергетических установок общей мощностью 700 МВт.

Самые крупные ВЭС — Кочубеевская ВЭС мощностью 210 МВт в Ставропольском крае и Адыгейская ВЭС мощность 150 МВт. Обе ветроэлектростанции были построены при помощи дочерней компании «Росатома».

Зеленая экономика

Анатолий Чубайс — о потенциале зеленой энергетики в России

Как разные страны мира выполняют планы по энергопереходу

Страны по всему миру поставили себе амбициозные задачи по переходу на возобновляемую энергию. Цели стали частью и Парижского соглашения — к 2030 году решения с нулевым выбросом углерода могут быть конкурентоспособными в секторах, на которые приходится более 70% глобальных выбросов. Сделать это планируется за счет энергетического перехода — процесса замены угольной экономики возобновляемой энергетикой. В 2020 году, несмотря на пандемию и экономическую рецессию, многие города, страны и компании продолжали объявлять или осуществлять планы по декарбонизации.

Как государству продвигать экологическую повестку

Ожидается, что в 2021 году Индия внесет самый большой вклад в развитие возобновляемой энергетики. Здесь планируют запустить ряд ветряных и солнечных проектов.

В Евросоюзе также прогнозируется скачок в приросте мощностей в 2021 году. Здесь даже в условиях пандемии не забывают о Green Deal — крупнейшей в истории ЕС коррекции экономического курса. Цель проекта — сформировать в ЕС углеродно-нейтральное пространство к 2030 году. Для этого планируется сократить на 40% объем выбросов парниковых газов от уровня 1990 года и увеличить долю энергии из возобновляемых источников до 32% в общей структуре энергопотребления. Как посчитала Еврокомиссия, достичь этих задач можно будет с помощью ежегодных инвестиций в размере €260 млрд. Доля ВИЭ в энергосистеме ЕС также постоянно растет. Так, около 40% электроэнергии в первом полугодии 2020 года в ЕС было произведено из возобновляемых источников.

Пока же в лидерах инвестиций в развитие возобновляемой энергетики — Китай, США, Япония и Великобритания. С тех пор, как BloombergNEF начал отслеживать эти данные, глобальные инвестиции в ветровую и солнечную энергетику, биотопливо, биомассу и отходы, малую гидроэлектроэнергетику увеличились почти на порядок. В годовом выражении вложения в чистую энергию выросли с $33 млрд до более чем $300 млрд за 20 лет.

Китай за десять лет стал главным производителем оборудования для возобновляемой энергетики. В первую очередь, речь идет о солнечных панелях. Семь из десяти крупнейших мировых производителей солнечных батарей — это китайские компании. В целом развитие технологий удешевило стоимость строительства новых объектов ВИЭ. Это приближает планы Китая стать углеродно нейтральным к 2060 году.

Ставка на солнце и уголь: два лица энергетики Китая

Серьезных шагов в сторону энергоперехода ожидают и от президента США Джо Байдена. Он не только вернул страну в Парижское соглашение, но и заявил о том, что намерен добиться чистых выбросов парниковых газов и перехода на 100% экологичной энергии к 2050 году.

Также к 2050 году планируют использовать только ВИЭ Япония, Южная Корея, Новая Зеландия и . Прошедший 2020 год уже стал самым экологичным для энергосистемы Великобритании со времен промышленной революции. Страна целых 67 дней смогла обходиться без угля. От традиционных источников энергии Британия планирует отказаться уже к 2025 году.

Популярные статьи  Жидкие диэлектрики: свойства и области применения

Активно развиваются ВИЭ в Испании — по прогнозам, сектор только солнечной энергетики в стране будет расти примерно вдвое быстрее, чем в Германии.

В 2020 году Шотландия получила 97% электроэнергии из возобновляемых источников. С помощью произведенной «зеленой» энергии получилось обеспечить электронужды более чем 7 млн домохозяйств. Шотландия планирует стать углеродной нейтральной уже к 2030 году.

Этот же год выбран временем полного отказа от традиционной энергетики для Австрии, а Саудовская Аравия запланировала к 2030 году получать 50% электроэнергии от ВИЭ.

Национальные цели по доле ВИЭ среди источников энергии

(Фото: REN21)

Полная версия отчета Renewables 2020 в формате PDF (см. стр. 57)

Солнечная энергетика в России

В марте 2021 года в России заработал закон о микрогенерации, благодаря которому у компаний и частных лиц появилась возможность продавать энергию во внешнюю сеть. Это значит, что домохозяйства, а также малые и средние предприятия, владеющие объектами микрогенерации, смогут поставлять избыточную электроэнергию в сеть — например, днем, когда потребление электроэнергии домохозяйством является низким, а выработка от домашней микро-СЭС — высокой. При этом выдача генерирующей мощности в сеть будет ограничена 15 кВт.

Зеленая экономика

Солнечные панели как шаг к энергетической демократии

Но даже без этого темпы роста количества солнечных станций в России набирают обороты, особенно среди владельцев промышленных и коммерческих объектов. Во многих регионах РФ стоимость солнечной энергии уже ниже стоимости энергии из сети, а сроки окупаемости станций для предприятий снизились до пяти лет.

Татьяна Ланьшина, к.э.н., генеральный директор ассоциации «Цель номер семь», старший научный сотрудник РАНХиГС:

«Производство солнечной электроэнергии стало коммерчески целесообразным для многих небольших компаний, особенно в южных регионах страны. Малый и средний бизнес платит за электроэнергию больше всех — например, в Краснодарском крае тариф для МСП может достигать ₽11 за 1 кВт·ч. При этом стоимость производства электричества за счет энергии солнца в Краснодарском крае может составлять от ₽4,5 за 1 кВт·ч».

Самые крупные СЭС России — Старомарьевская СЭС в Ставропольском крае мощностью 100 МВт, Фунтовская СЭС мощностью 75 МВТ в Астраханской области, Самарская СЭС мощностью 75 МВт.

Как следует из недавно опубликованного исследования, перспективными регионами для развития солнечной энергетики могут стать Амурская область, Еврейская автономная область, Забайкальский край, Приморский край, Республика Алтай, Республика Бурятия, Республика Дагестан, Республика Тыва. В этих регионах солнечная генерация может обойтись менее чем в ₽4 за 1 кВт·ч. Интересно, что солнечных дней в некоторых городах Дальнего Востока, например, в Хабаровске, больше, чем в Сочи.

Мощности ветроэнергетики

В 2014 году политическая и нормативная неопределенность, особенно в странах ЕС вызвали заметное изменение темпов использования энергии ветра. Инвестиции сдержали факторы неопределенности изменений в политике возобновляемых источников энергии на рынках. Только 12,8 ГВт ветровых мощностей были добавлены в Европе, в основном в Германии, а Европейский союз вырабатывал всего 129 ГВт, из них 8 ГВт оффшорных. В середине 2016 ЕС выработала всего 142 ГВт.

Китай в конце 2020 года выработал 250 ГВт установленной мощности согласно их национального бюро статистики или 245 ГВт согласно информации ЕС, обогнав ЕС и все страны.

США имеет 94 ГВт, Германия имеет 55 ГВт, Испания имеет 23 ГВт, Индия 25 ГВт, Великобритания 14 ГВт, Канада 11 ГВт, Франция с 10 ГВт в конце 2015 года.

Технический потенциал и использование энергии ветра в России оценивается порядка 50 ГВт в ветровых зонах в России на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки и на побережьях внутренних морей. Порядка трети энергетического потенциала сосредоточено на Дальнем Востоке. Но пока ветроэнергетика в России не развита и выработала меньше 1 ГВт. Кpyпной  дeйcтвyющей в Poccии являeтcя Ульянoвckaя ветроэлектростанция  с мощностью 35 МВт. Очевидно освоение более быстрыми темпами начнется когда  закончатся ресурсы на Земле.

Альтернативный способ выработки энергии

Использование энергии ветра в мировой практике получило широкое распространение, особенно в последние десятилетия. Все больше стран вкладываются в это направление, осознавая доступность и полную безвредность для природы этого альтернативного способа выработки энергии.

Перспективы и возможности направления доказаны на практике, а потенциал достаточно велик, чтобы разрабатывать и совершенствовать технику производства электроэнергии при помощи ветра. Постоянное появление новых разработок, все более эффективных и производительных, наглядно иллюстрирует ценность ветроэнергетики в глазах бизнесменов и техников.

Самая мощная в мире ВЭС

Видимо, бакинский опыт оказался вполне успешным, так как работы продолжились, в ЦАГИ под руководством Григория Харлампиевича Сабинина была создана уникальная ветросиловая лаборатория, а в 1931 году в Балаклаве (Крым) был введен в строй первый экспериментальный ветроагрегат мощностью 100 кВт — самый мощный в мире на тот момент. 

Ротор для этого аппарата был разработан Сабининым и Красовским на основе точных вычислений и экспериментальных исследований в ветросиловой лаборатории ЦАГИ; Опорную конструкцию спроектировал знаменитый архитектор Владимир Шухов (создатель легендарной башни), а аппаратную часть — талантливый инженер Юрий Кондратюк. Интересно, что Кондратюк во время утверждения проекта был в ссылке, поэтому документ подписывал Николай Никитин, который позже спроектирует Останкинскую башню. До самой войны эта огромная ветроустановка весом в 9 тонн и диаметром лопастей в 30 метров давала электричество для трамвайной линии Балаклава–Севастополь, но боевые действия на полуострове, увы, не пережила. 

Уже в 1932 году Наркомтяжпром объявил конкурс на проект Крымской ветроэлектростанции, которая должна была обеспечивать электроэнергией все южное побережье полуострова. Проект выиграл Кондратюк — башня должны была достигать высоты 165 метров и обладать двумя 80-метровыми ветроколесами, размещенными на двух уровнях. Проект поддержал нарком Орджоникидзе и работы даже начались, в 1936 году для ветрогенератора на 12 000 кВт был построен фундамент возле горы Ай Петри. Однако вскоре после смерти наркома масштабы проекта были сокращены, а уже в 1938 году проект и вовсе свернули и воплощения он так и не получил.  

Тогда же было налажено серийное производство ветрогенераторов малой мощности (3–4 Квт), использовавшиеся в сельском хозяйстве и кустарной промышленности, преимущественно в отдаленных районах. Например, в родном стойбище чукотского писателя Юрия Рытхэу Улак, электрическое освещение появилось в конце 1930-х годов именно благодаря ветродвигателю, который обеспечивал электроэнергией и соседнюю полярную станцию.

Состояние, перспективы и новые направления в развитии ветроэнергетики

Как видно из рис. 43, 44 в мире ветроэнергетика находится в состоянии постоянного роста. Суммарная установленная мощность ветроэнергетики в 2016 г. составила 487 ГВт. Наибольшая динамика роста наблюдается в Китае (+23 %). В первые 5 стран по развитию ветроэнергетики входят Китай, США, Германия, Индия и Испания. Учитывая размеры стран, наибольшие успехи в развитии ветроэнергетики имеет Германия (см. рис. 44).

Развитие ветроэнергетики в мире

Рис. 43. Тенденция развития мировой ветроэнергетики

Развитие ветроэнергетики в мире

Рис. 44. Первые 10 стран в развитии мировой ветроэнергетики

Ветроэнергетика получает свое развитие и в Республике Беларусь. По сведениям Департамента по энергоэффективности на 01.08.2017 г. в стане действует 78 ВЭУ с общей мощностью 75,9 МВт. Запущен в эксплуатацию первый ветропарк в Новогрудском районе, который включает 6 ВЭУ каждая мощностью 1,5 МВт (рис. 45). В 2017 г. введена в эксплуатацию ВЭУ фирмы Vestas мощностью 3,3 МВт (высота мачты – 120 м.).

Развитие ветроэнергетики в мире

Рис. 45. Общий вид первого в Республике Беларусь ветропарка мощностью 9 МВт

Популярные статьи  Электромагнит

Можно выделить следующие направления и тренды развития ветроэнергетики:

  • увеличение установленной мощности ВЭУ (до 10–20 мВт) (рис. 46);
  • расширение строительства офшорных ветропарков;
  • совершенствование автономных ветроэнергетических систем;
  • разработка новых более эффективных ветротурбин;
  • снижение стоимости электроэнергии, вырабатываемой ВЭУ (рис. 47).

Развитие ветроэнергетики в мире

Рис. 46. Тренды в развитии ветроэнергетики

Развитие ветроэнергетики в мире

Рис. 47. Тренды в изменении стоимости электроэнергии, вырабатываемой ВЭУ

Новые конструкции ветроустановок. Аэродинамическая турбина AeroGreen (РФ). Основана на использовании турбинных технологий и оригинальной конструкции, обеспечивающей увеличение коэффициента использования воздушного потока в два раза (рис. 48). Конструкция турбин AeroGreen обеспечивает не только хорошую шумоизоляцию, но исключает опасность попадания посторонних предметов, птиц в плоскость вращения, а также обеспечивает возможность работы аэродинамической турбины даже при самых неблагоприятные погодных условиях (снег с дождем, град, шквалистый ветер, ураган и т. п.).

Развитие ветроэнергетики в миреРазвитие ветроэнергетики в мире

Развитие ветроэнергетики в миреРазвитие ветроэнергетики в мире

Рис. 48. Общий вид ветротурбин AeroGreen

Ветроколесо AeroGreen, в отличие от ВЭУ трехлопастной схемы вращается не в вертикальной плоскости, а в горизонтальной, т. е. параллельно земле. Воздушные массы, с любой стороны перемещаются по сужающему корпусу ветроустановки вверх вдоль вертикально установленных ребер и направляются через лопатки ветроколеса в зону разряжения верхнего обтекателя. Эти особенности конструкции позволяют получить ускорение воздушного потока и обеспечивают вращение ветроколеса уже при скорости ветра от 1,5 м/с.

Как видно из рис. 49 ветротурбина AeroGreen по сравнению с обычными ВЭУ с вертикальной и горизонтальной осью вращения имеет преимущества по уровню шума, диапазону ветровых скоростей и стоимости киловатт вырабатываемой электроэнергии.

Развитие ветроэнергетики в мире

Рис. 49. Сравнительные характеристики ветротурбин

Перспективным направлением в дальнейшем развитии ветроэнергетики является перепрофилирование выводимых из разработки шахт, рудников и других подземных предприятий в ветроэнергетические станции. Согласно проекту (Украина), в горных выработках закрытых шахт будет размещаться каскад ветроэнергетических установок (турбинные ветрогенераторы). Их будет приводить в действие естественная тяга воздуха, возникающая из-за разности температур, на земной поверхности и в подземных тоннелях.

Просмотров:
230

Использование энергии ветра

Ветровые турбины до 6 МВт в настоящее время функционируют во многих странах мира, хотя большинство новых 1-3 МВт.

В России в 2020 году запущена Азовская — наземная ветряная электростанция — 90 МВт состоящая из 26 ветряков.

В эксплуатации такие турбины требуют ветер в диапазоне от 4 до 25 метров в секунду (14-90 км/ч). Относительно небольшое число областей имеет значительные выгоды в этом диапазоне, чтобы использовать эффективно энергию ветра и дать более чем 25% КПД.Развитие ветроэнергетики в мире

Ветровые турбины имеют высокие стальные башни со смонтированным генератором в гондоле, а роторы с тремя винтами длиной до 50 м. Фундаменты требуют существенной масса железобетона. Таким образом, необходимые энергоресурсы в производстве значительны

Также размещение имеет важное значение в получении чистой прибыли от них

Там, где есть резервные мощности электроэнергии, которые могут привлекаться в очень короткие сроки (например гидро), значительная доля электроэнергии может быть предоставлена от энергии ветра. Наиболее экономичным и практичным размер коммерческих ветровых турбин в настоящее время около 2 МВт, сгруппированных в ветровые электростанций до 200 МВт. В зависимости от места, большинство турбин работают на 25% нагрузки по факту в течение года (среднеевропейский), но некоторые достигают 40% в оффшорах. Существует четкое различие между офшорными местами, хотя последние являются более дорогостоящими для установки и запуска. Для Великобритании, в 2019 году, наземная ветроэнергетика в среднем дала КПД 30% мощности, а оффшорные 41%. В 2019 году в Великобритании  выработано более 24 ГВт электроэнергии.

Перспективы развития ветроэнергетики

Германия экспериментирует с производством водорода через электролиз используя энергию ветра.

Один из подходов к смягчению непостоянства ветров является добыча водорода методом электролиза. Проводится строительство экспериментального завода для производства до 360 м3/ч водорода в Германии. Было высказано предположение о том, что вся электроэнергия из ветра может использоваться таким образом, значительно упрощая управление электросетями. В Германии, вблизи Нойбранденбурга излишки электроэнергии от 140 МВт ветропарка делают водород, хранят его, а затем сжигают для производства электричества, когда спрос высок. Однако есть 84% потерь в этом двойном процессе.

Недостатки ветроэнергетики

  1. Основным недостатком является сильная зависимость от ветра.
  2. Убивает птиц, воздействуя, таким образом на окружающую среду. Общества дикой природы США посчитало что за год от ветрогенераторов погибло 83000 хищных птиц (ястребы, орлы, соколы и т.д). Существует особое беспокойство по поводу мигрирующих стаями птиц.

Новые ветровые электростанции чаще всего оффшорные в мелководных морях. В Великобритании 3300 МВт ветроэнергетическая мощность в оффшоре, больше, чем внутренняя ветроэнергетика.

Ветроэнергетические парки

Под ветроэнергетическим парком понимается совокупность ВЭУ, размещаемых и производящих электроэнергию на одной локализованной территории, которые имеют наряду с индивидуальной, общую систему управления и контроля.

Согласно существующим международным нормам и ТКП РБ устанавливаются следующие требования к размещению ветропарков:

  • необходимое удаление ветропарка от обитаемых районов (минимальное удаление от одиночных жилых домов на расстоянии не менее 300 м, селений – 800 м);
  • уровень шума, распространяемого ВЭУ в ночное время должен находиться в интервале 35–40 децибел;
  • расстояние между установками по фронту (по главному направлению ветра) должно быть не менее 3–5 диаметров роторов ВЭУ (рис. 36);
  • по глубине главного направления между ВЭУ расстояние должно составлять не менее 8–10 диаметров роторов ВЭУ, по другим направлениям – расстояние должно быть не менее 5 диаметров роторов ВЭУ;
  • удаление ВЭУ ветропарка от близлежащего лесного массива должно составлять не менее 15 величин высот деревьев лесного массива (рис. 37).

Развитие ветроэнергетики в мире

Рис. 36. Размещение ВЭУ ветропарка по главному направлению ветра

Развитие ветроэнергетики в мире

Рис. 37. Размещение ВЭУ ветропарка вблизи лесных массивов

Одним из требований размещения ветропарков является отсутствие в выбранном районе предполагаемого строительства водоемов, таких как рек, озер, болот, т. к. их наличие приведет к различным техническим проблемам, в частности:

  • невозможности использования большегрузного крана для монтажа ВЭУ;
  • трудностям при прокладке кабельных трасс для соединения электрической части ВЭУ;
  • усложнению конструкции фундамента ВЭУ, вызванному возможным высоким уровнем грунтовых вод;
  • необходимости насыпке (намывке) грунта и поднятию уровня земли строительного участка.

Для определения наилучшего места для будущего расположения ветропарка необходимо:

  • знать наилучшие ветровые условия окрестной местности;
  • иметь карту, по которой можно будет правильно спланировать конкретное место для строительства ветропарка (рис. 38);

Основными факторами, которые влияют на принятие решения о размещении ветропарка, являются:

  • наличие близлежащих хороших подъездных путей (морские порты, ж/д станции и ж/д пути, автомобильные дороги и т. д.) или возможность строительства специальных временных дорог для транспортировки крупногабаритных конструкций (рис. 39);
  • близость места размещения ВЭУ к высоковольтным линиям электропередачи (возможные места подключения ветропарка к высоковольтной сети напряжением 110 кВ), возможности прокладки высоковольтного электрокабеля.

Развитие ветроэнергетики в мире

Рис. 38. План размещения ВЭУ типа «NORDEX N-80/2500»

Развитие ветроэнергетики в мире

Рис. 39. Транспортирование конструктивных элементов ВЭУ

Разрешение на размещение ветропарка выдается районной администрацией после согласования с экологическими, санитарно-эпидемиологическими, пожарными службами, лесничеством и другими организациями, в том числе Министерством обороны, так как ВЭУ влияют на радиосвязь и работу радиолокационных станций.

Применение

Развитие ветроэнергетики в мире

Использование энергии ветра является одним из самых перспективных направлений в современной энергетике. Наглядное сравнение: потенциал ветра более чем в 100 раз превышает потенциал всех рек Земли.

Ветропарки бывают:

  1. Крупные.Обеспечивают электричеством города и промышленные предприятия.
  2. Небольшие.
  3. Вырабатывают электроэнергию для удалённых жилых районов, частных ферм.

Набирает популярность офшорное строительство: ветроустановки возводятся прямо на воде, в 10–12 км от береговой линии океана. Такие парки приносят больше прибыли, чем традиционные. Связано это с тем, что скорость ветра над океаном в несколько раз выше, чем на суше.

Популярные статьи  Зарядка для аккумуляторов 18650

Проект ветроэлектрификации всей страны

на фото: Ветроэлектростанция Уфимцева, состояние на сентябрь 2007 г., wikipedia.org

Другое неоспоримое достижение советской ветроэнергетики 1930-х годов — ветроэлектростанция Уфимцева, построенная в Курске знаменитым энтузиастом, “поэтом в области научной техники”, как выразился близко общавшийся с ним Максим Горький. Анатолий Георгиевич Уфимцев — курский самоучка, внук купца и астронома-любителя Ф.А. Семенова, родился в 1880 году. Он не закончил даже реальное училище, но с ранних лет занимался изобретательством. В 16 лет он соорудил специальное перо для копирования прокламаций, а в 1898 году изготовил с друзьями взрывное устройство и, руководствуясь антицерковными мотивами, произвел взрыв в церкви (никто не пострадал), за что впоследствии получил пять лет ссылки в Акмолинске.

Всю свою жизнь, не считая ссыльных лет, изобретатель прожил в родном Курске. Всего он получил 68 патентов, включая несколько интересных новаторских конструкций самолетов и двигателей. В 1929 году, Уфимцев построил в Курске довольно мощную (7 кВт) ветроэлектростанцию, впервые в мире оснащенную аккумулятором для равномерной отдачи энергии ветродвигателя и поворотными лопастями. Высота станции составляла 42 метра, а диаметр лопастей 9 метров. Часть средств на постройку выделило правительство, кроме того, активную поддержку изобретателю оказывали в ЦАГИ

Важно, что для энтузиаста Уфимцева это был не просто эксперимент ради науки и техники — он, вместе с известным в то время ученым-теоретиком профессором Ветчинкиным, провел статистические расчеты по районам России и они подтвердили гипотезу, что вся энергетика страны может быть основана на энергии ветра. Дело оставалось только за техническим воплощением. 

Ветроэлектростанция Уфимцева успешно работала, давая электропитание дому и мастерской изобретателя, а также освещая еще несколько домов по улице. Более масштабную ветроэлектрификацию остановила внезапная смерть изобретателя: 1936 году Уфимцев заболел тифом и скончался. Его творение не переставало работать, перенесло войну и оккупацию, но в 1957 году было остановлено для ремонта и замены деталей. К сожалению, техническая документация не сохранилась, а инженеры не смогли разобраться в конструкции, так что уникальную ветроэлектростанцию запустить снова уже не удалось. 

Перспективы развития

Принимая во внимание, что традиционные источники энергии имеют свойство заканчиваться, а их использование приводит к загрязнению атмосферы планеты, то все большее количество стран, принимают внутренние и межгосударственные соглашения о защите экологии и контролю за потреблением энергоресурсов. В развитие этой тенденции, использование возобновляемых источников энергии, к тому же являющихся экологическими чистыми, является очень актуальным

Для стимулирования развития отрасли, в ряде стран разработаны направления деятельности, в этой области энергетики, это:

  1. Развитие морских ветропарков;
  2. Мотивация населения и промышленности в установке ветровых генераторов;
  3. Наращивание процента ветровой энергетики в общем энергопотреблении.

В связи с этим, развитие ветроэнергетики, как источника альтернативной энергии, постоянно продолжается и будет иметь тенденцию к ускорению этого процесса. Ярким примером таких разработок являются плавающие и парящие ветровые генераторы.

Плавающие ветровые генераторы – монтируются вдали от берега, на глубине 100 и более метров. Первые подобные устройства, были смонтированы в 2007 году, в Норвегии. В связи с тем, сто на поверхности моря всегда, за редким исключением бывает полный штиль, присутствует движение воздушных масс, то КПД установок смонтированных подобных образом, выше, чем у монтируемых на поверхности земли.

Парящие ветровые генераторы – представляют из себя надувную сферу, наполненную гелием, и турбины, расположенной по центру устройства.
К тому же конструкторы и разработчики не останавливаются на достигнутом, работы продолжаются в постоянном режиме.

Автономное и сетевое использование ВЭУ

Несмотря на достаточно развитую систему государственного электроснабжения, всегда существует потребность в автономном энергообеспечении, независимом от централизованной поставки энергии. Вызвано это тенденцией развития мелких, но весьма эффективных фермерских хозяйств усадебного типа. Не исчезли проблемы в энергоснабжении и крупных сельскохозяйственных предприятий, объединяющих в силу своей производственной специфики, обширную сеть локально расположенных производственных объектов на довольно большом расстоянии от электросетей. Эта проблема может быть решена с применением автономных ветроэнергетических установок (рис. 33).

Развитие ветроэнергетики в мире

Рис. 33. Автономное использование ВЭУ

Любая автономная система, в том числе и ветроэлектрическая, работает независимо от сети централизованного энергоснабжения. В этих условиях ВЭУ может функционировать самостоятельно, использоваться как дублер любого другого генератора или применяться в сочетании с другими энергетическими установками в качестве компонента комбинированной системы энергоснабжения. Такие системы используются также для подъема воды или для электроснабжения домов, ферм или производственных помещений малых предприятий.

Как видно из рис. 34 необходима система управления со специальным конвертором, который осуществляет преобразование постоянного тока в переменный, повышение до сетевого и стабилизацию напряжения. Кроме этого, для накопления электрической энергии и ее использование при отсутствии ветра в систему должны входить аккумуляторы требуемой емкости.

Развитие ветроэнергетики в мире

Рис. 34. Схема подключения автономной ВЭУ к потребителю

В состав автономной системы электрообеспечения могут входить и другие возобновляемые источники энергии (солнечные батареи) (рис. 35) и дизель-генератор, что обеспечит бесперебойное энергообеспечение автономного потребителя даже при длительном отсутствии ветра.

При подключении к сети электроэнергия, вырабатываемая ветроэнергетической установкой, расположенной на территории потребителя, может также использоваться в качестве дополнительного источника к общественному энергоснабжению. В условиях параллельного автономного электроснабжения вырабатываемая электроэнергия используется приоритетно для покрытия в энергии собственных нужд, а «излишки сдаются» в электросети по белее высоким («зеленым») тарифам.

Развитие ветроэнергетики в мире

Рис. 35. Схема комплексного использования ВИЭ для автономного энергообеспечения потребителей

В этом случае у потребителя должен быть установлен дополнительный счетчик электроэнергии (счетчик обратной последовательности), передаваемой в общественную сеть и ВЭУ зарегистрирована в Министерстве природных ресурсов и защиты окружающей среды, как возобновляемый источник.

Мощность подключаемой ветроэнергетической установки в этой ситуации должна быть не ниже 10 кВт. Максимальная мощность подключаемых ВЭУ не должна превышать 20 % мощности энергосистемы, так как могут возникать колебания частоты и напряжения.

Значительные проблемы для устойчивой работы энергосети, равномерности выработки и передачи в сеть электроэнергии представляют ветропарки с мощностями более 100 МВт (погода – зависимая поставка энергии).

С чего всё начиналось

Развитие ветроэнергетики в миреСуществует общераспространённое заблуждение, что ветроэнергетика зародилась лишь в XVII–XIX столетиях. Однако на самом деле ветер как источник энергии активно использовался представителями древних цивилизаций. Вот несколько красноречивых примеров из истории:

  1. Уже в III–II веках до н. э. жители Месопотамии изобрели первые прототипы ветряных мельниц для размола зерна. Лопасти таких устройств, вращаясь под действием ветра, приводили в движение массивный жернов. Он, в свою очередь, растирал зерно в муку. Так энергия ветра позволила сэкономить силы и время нескольких сотен рабочих.
  2. В Древнем Египте ветряные мельницы появились примерно в тот же период.
  3. В Древнем Китае с помощью ветра производилась откачка водных масс с рисовых полей.
  4. В XII веке технологии, базирующиеся на использовании воздушных потоков, стали распространяться по Европе.

Долгое время ветряная энергетика не могла похвалиться хорошими результатами. Она немного облегчала жизнь и работу человека, но не могла послужить на благо всего человечества.

И только в XX веке технический прогресс коснулся этой отрасли. Учёные начали разрабатывать оборудование, позволяющее преобразовывать энергию воздушных потоков в электроэнергию.

Оцените статью