Трансформаторы тока — принцип работы и применение

Устройство и принцип работы трансформатора тока

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Требования при эксплуатации

Аппараты имеют хорошую устойчивость к внешним воздействиям и рассчитаны на эксплуатацию на высоте не более 1000 м (или 2000 м, в зависимости от модели) над уровнем моря. Максимальная температура для стабильной работы, учитывая внутренний перегрев трансформатора, не должна быть выше +55°C. Минимально допустимая температура воздуха -40°C. Трансформатор может иметь любое пространственное расположение.

Перед установкой нужно:

  • удалить консервирующую смазку и очистить аппарат от грязи и пыли;
  • осмотреть корпус на возможные сколы и трещины, присутствие коррозионных пятен на металлических частях;
  • после монтажа вторичной обмотки, осуществить пломбирование выводов.

Кратковременное превышение допустимого первичного тока – не более 2 часов в неделю. Электроэнергия должна быть качественной.

Окружающая среда в месте, где расположен трансформатор, не должна быть взрывоопасной, содержать излишнюю проводящую ток пыль, концентрировать химически активные газы и пары, способные повредить корпус. Вероятность размыкания вторичных обмоток при работе устройства должна быть полностью исключена. Если надобность в эксплуатации трансформаторов отпадает, вторичную обмотку замыкают накоротко.

Периодически аппарат должен проходить проверку. В случае отсутствия особых требований к эксплуатации нужно проводить испытания вторичной обмотки согласно ГОСТу при одноминутном испытательном напряжении, равном 3000 Вт. Межповерочный период указывается в техническом паспорте, прилагаемом к устройству.

Поверка

Поверка измерительных трансформаторов, трансформаторов напряжения, поверки трансформаторов тока всех возможных видов не имеют одного фиксированного срока. Разные типы и модели имеют свою периодичность поверочных мер.

Межповерочный интервал находится в диапазоне 4–16 лет. Например (модель — срок в годах):

  • ТТИ-А — 5;
  • ТОП — 8;
  • ТШП — 16;
  • ТОЛ-10 — 8;
  • ТПЛ-10 — 8.

Трансформаторы тока - принцип работы и применение

Узнать сроки можно из таких источников:

  • паспорт изделия. Самый простой способ, так как данная информация в технической документации на такой товар обязательная. Если оригинальные бумаги утеряны, то можно направить запрос производителю. Примерные данные можно узнать из интернета — в сети есть сканы и образцы паспортов;
  • у завода-изготовителя;
  • в сертификате предыдущей процедуры;
  • ГОСТ 7746-2015.

Трансформаторы тока - принцип работы и применение

Поверки нужны для допуска к эксплуатации, мероприятие осуществляют специальные аккредитованные и лицензированные учреждения, лаборатории, структуры энергетических компаний. Исполнитель должен иметь соответствующее свидетельство. После мероприятия его проведение и состояние изделия подтверждается поверительным клеймом, пломбой, отметкой в паспорте, протоколом.

Основная цель поверки — определить погрешность. По непригодным изделиям гасят клеймо, вносят запись в паспорт, выдают извещение о непригодности, аннулируют предыдущие свидетельства.

При тестировании используют несколько методик и приборов (мегаомметры, вольтметры, амперметры, приборы сравнения токов). Подробно процедура прописана в ГОСТе 8.217-2003.

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.

Трансформаторы тока - принцип работы и применениеТрехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформаторы тока - принцип работы и применениеТрансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Трансформаторы тока - принцип работы и применениеТри однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.
Популярные статьи  Правила применения электрозащитных средств при проведении работ в электроустановках

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Трансформаторы тока - принцип работы и применение

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Трансформаторы тока - принцип работы и применение
Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Трансформаторы тока - принцип работы и применение
Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Если k > 1, то трансформатор повышающий, а при 0 < k < 1 – понижающий. Например, когда число витков, из которых состоит первичная обмотка, в три раза меньше количества вторичных витков, то k = 1/3, тогда U2 = 1/3 U1.

Режимы работы

Силовой трансформатор может работать в трех режимах:

  • в состоянии холостого хода;
  • в режиме нагрузки;
  • в короткозамкнутом режиме.

Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.

Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.

В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.

Классификация по видам

Силовые

Силовой трансформатор переменного электротока — это прибор, использующийся в целях трансформирования электроэнергии в подводящих сетях и электроустановках значительной мощности.

Необходимость в силовых установках объясняется серьезным различием рабочих напряжений магистральных линий электропередач и городских сетей, приходящих к конечным потребителям, требующимся для функционирования работающих от электроэнергии машин и механизмов.

Автотрансформаторы

Устройство и принцип работы трансформатора в таком исполнении подразумевает прямое сопряжение первичной и вторичной обмоток, благодаря этому одновременно обеспечивается их электромагнитный и электрический контакт. Обмотки устройств имеют не менее трех выводов, отличающихся своим напряжением.

Трансформаторы тока - принцип работы и применение

Основным достоинством этих приборов следует назвать хороший КПД, потому как преобразуется далеко не вся мощность — это значимо для малых расхождениях напряжений ввода и вывода. Минус — неизолированность цепей трансформатора (отсутсвтие разделения) между собой.

Трансформаторы тока

Данным термином принято обозначать прибор, запитанный непосредственно от поставщика электроэнергии, применяющийся в целях понижения первичного электротока до подходящих значений для использующихся в измеряющих и защитных цепях, сигнализации, связи.

Первичная обмотка трансформаторов электротока, устройство которых предусматривает отсутствие гальванических связей, подключается к цепи с подлежащим определению переменным электротоком, а электроизмерительные средства подсоединяются к вторичной обмотке. Текущий по ней электроток примерно соответствует току первичной обмотки, поделенному на коэффициент трансформирования.

Трансформаторы напряжения

Назначение этих приборов — снижение напряжения в измеряющих цепях, автоматики и релейной защиты. Такие защитные и электроизмерительные цепи в устройствах различного назначения отделены от цепей высокого напряжения.

Импульсные

Данные виды трансформаторов необходимы для изменения коротких по времени видеоимпульсов, как правило, имеющих повторение в определенном периоде со значительной скважностью, с приведенным к минимуму изменением их формы. Цель использования — перенос ортогонального электроимпульса с наиболее крутым срезом и фронтом, неизменным показателем амплитуды

Главным требованием, предъявляющимся к приборам данного типа, является отсутствие искажений при переносе формы преобразованных импульсов напряжения. Действие на вход напряжения какой-либо формы обуславливает получение на выходе импульса напряжения идентичной формы, но, вероятно, с другим диапазоном либо измененной полярностью.

Разделительные

Что такое трансформатор разделительный становится понятно исходя из самого определения — это прибор с первичной обмоткой, не связанной электрически (т.е. разделенной) с вторичными.

Популярные статьи  Строение атомов - элементарные частицы вещества, электроны, протоны, нейтроны

Существует два типа таких устройств:

  • силовые;
  • сигнальные.

Силовые применяются с целью улучшения надежности электросетей при непредвиденном синхронном соединении с землей и токоведущими частями, либо элементами нетоковедущими, оказавшимися из-за нарушения изоляции под напряжением.

Сигнальные применяются в целях обеспечения гальванической развязки электроцепей.

Согласующие

Как работает трансформатор данного вида также понятно из его названия. Согласующими называются приборы, применяющиеся с целью согласования между собой сопротивления отдельных элементов электросхем с приведенным к минимуму изменением формы сигнала. Также устройства такого типа используются для исключения гальванических взаимодействий между отдельными частями схем.

Пик-трансформаторы

Принцип действия пик-трансформаторов базируется на преобразование характера напряжения, от входного синусоидального в импульсное. Полярность после перехода изменяется по прошествии половины периода.

Сдвоенный дроссель

Его азначение, устройство и принцип действия, как трансформатора, абсолютно идентичны приборам с парой подобных обмоток, которые, в данном случае, абсолютно одинаковы, намотанны встречно или согласованно.

Также часто можно встретить такое наименование данного устройства, как встречный индуктивный фильтр. Это говорит о сфере применения прибора – входная фильтрация напряжения в блоках питания, звуковой технике, цифровых приборах.

Разновидности

Высоковольтное измерительное оборудование включает в себя два типа устройств. В эту категорию устройств входят:

  • Измерительный трансформатор напряжения.
  • Измерительный трансформатор тока.

Первая категория приборов предназначена для работы вольтметров, фазометров, реле соответствующих типов. В область работы измерительных трансформаторов тока входит осуществление функционирования амперметров и прочего подобного оборудования.

Представленные типы измерительных трансформаторов производятся с номинальной мощностью от 5 до нескольких сот ВА. Измерительные трансформаторы тока и напряжения предназначены для совместной работы с вольтметрами на 100 В и амперметрами 1-5 А.

Что такое трансформатор тока, принцип работы, типы, схемы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра. 

Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

Трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке. 

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока:

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение

Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Принцип работы трансформатора тока

Пожалуй каждый, кто когда-нибудь работал с аналоговой электроникой, сталкивался наводками от сети 220В. Казалось бы, если от этих наводок так сложно избавиться, то может быть и определить включение нагрузки должно быть очень легко? Однако всё оказалось не совсем так просто.

Действительно, простейший измерительный трансформатор тока можно сделать из мотка обычного двухжильного силового кабеля — по одной из жил запустить измеряемый ток, а с другой снимать полезный сигнал. Попробуем прикинуть (хотя бы по порядку величины), какое напряжение образуется на концах «сигнальной» жилы, если через «силовую» пропустить ток к целевой нагрузке? Может этого будет уже достаточно для решения поставленной задачи?

Популярные статьи  Электролизер

Моток кабеля в такой конфигурации по сути представляет собой трансформатор с воздушным сердечником. Ток, проходящий через витки силовой жилы, формирует переменное магнитное поле. Это поле создаёт электродвижущую силу ЭДС индукции в каждом витке сигнальной жилы. Величина ЭДС пропорциональна скорости изменения магнитного потока проходящего через окружённую витком поверхность:

Если предположить, что витки в мотке кабеля уложены достаточно плотно, а ток в измерительной жиле равен нулю, то магнитный поток через все витки будет одинаковым, и его можно будет посчитать как произведение индуктивности одного витка , числа витков и тока в силовой жиле . ЭДС во всех измерительных витках будет одинакова и суммарное напряжение на концах сигнальной жилы будет равно произведению числа витков на ЭДС в одном витке:

В бытовой сети переменного тока , где — частота, равная 50 Гц, а — амплитудное значение силы тока. Значение можно определить исходя из мощности нагрузки и действующего значения напряжения , равного 230 В. В итоге для производной тока по времени получаем такую формулу:

Например, для нагрузки мощностью 1 кВт, подключённой к обычной бытовой сети с напряжением 230 В, вычисленная по этой формуле амплитуда производной тока по времени получится чуть меньше 2000 ампер в секунду.

Индуктивность одного витка посчитаем исходя из радиуса нашего мотка и радиуса проволоки, из которой сделана жила кабеля :

Здесь — магнитная постоянная. Для мотка кабеля диаметром 10 см, имеющего жилы диаметром 2 мм, индуктивность витка получается около 0.25 мкГн. Если такой моток сделать из кабеля длиной 10 метров, то получится около 30 витков. В итоге для нашей нагрузки в 1 кВт напряжение на разомкнутой сигнальной жиле получится таким:

Значение получается вполне детектируемое, но что произойдёт в момент включения или выключения нагрузки, когда ток может изменяться в десятки или даже сотни раз быстрее, чем при нормальной работе? В этом случае вместо 450 мВ на концах сигнальной жилы может быть скачок напряжения в несколько десятков или даже сотню вольт, который вполне может повредить вход микроконтроллера.

Чтобы решить проблему с зависимостью ЭДС индукции от частоты сигнала, в трансформаторах тока используется совсем другой режим работы — вместо того, чтобы разомкнуть вторичную обмотку и измерять на ней напряжение, она замыкается накоротко и измеряется проходящий через неё ток.

Как только в сигнальной жиле появляется ток, он создаёт своё собственное магнитное поле, направленное противоположно исходному. В идеальном случае ток в сигнальной жиле мгновенно вырастет настолько, что полностью компенсирует магнитный поток силовой жилы. Для рассмотренного выше случая с одинаковым числом витков силы тока в двух жилах окажутся равны, а ЭДС индукции в сигнальной жиле будет стремиться к нулю. При разном числе витков отношение токов в силовой и сигнальной обмотках будет определяться отношением числа витков: , а суммарный магнитный поток и ЭДС индукции также будут стремиться к нулю.

Что делает трансформатор

У трансформатора много полезных и важных функций:

Передает электричество на расстояние. Он способен повышать переменное напряжение. Это помогает передавать переменный ток на большие расстояния. Так как у проводов тоже есть сопротивление, от источника тока требуется высокое напряжение, чтобы преодолеть сопротивление проводов. Поэтому, трансформаторы незаменимы в электросетях, где они повышают напряжение до десятки тысяч вольт. Еще возле электростанций, которые вырабатывают электрический ток, стоят распределительные трансформаторы. Они повышают напряжение для передачи их потребителям. А возле потребителей стоит понижающий трансформатор, который уменьшает напряжение до 220 В 50 Гц.

Питает электронику. Трансформатор — это часть блока питания. Он понижает входное сетевое напряжение, которое затем выпрямляется диодным мостом, фильтруется и подается на плату. По сути, он используется практически в любом блоке питания и преобразователе.

Питает радиолампы и электронно-лучевые трубки. Для радиоламп нужен большой спектр напряжений. Это и 12 В и 300 В и др.

Для этих целей и делают трансформаторы, которые понижают и повышают сетевое напряжение. Это делается за счет разных обмоток на одном сердечнике. Разновидностью ламп являются электронно-лучевые трубки (ЭЛТ). Они используются в электронных микроскопах, где с помощью пучка электронов можно получить детальные изображения микроскопических поверхностей. Для них нужны высокие напряжения, порядка нескольких десятков тысяч киловольт. Это нужно для того, чтобы в вакуумной трубке можно было разогнать пучок электронов до больших скоростей. Электрон в вакууме может повышать скорость своего передвижения за счет повышения напряжения. И здесь, кстати, используется импульсный трансформатор. Он повышает напряжение за счет работы ШИМ (широтно-импульсной модуляции). Такие трансформаторы называются строчными (или развертки).

Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.

  • Согласует сопротивления. В усилителях звука согласование источника и потребителя играет важную роль. Поэтому, есть согласующие трансформаторы, которые позволяют передать максимум мощности в нагрузку. Если бы не было такого трансформатора, то лаповые усилители, которые были рассчитаны на 100 Вт, выдавали бы менее 50 Вт в нагрузку.

Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.

Для безопасности. Трансформатор создает гальваническую развязку между сетью и блоком питания. Это последний рубеж безопасности в блоке питания, если что-то пойдет не так. Будет время для срабатывания предохранителя. Или же катушки и магнитопровод расплавятся, но потребителю не дадут сетевую нагрузку. Он физически не связан с сетью 220 В. Связь есть только с помощью магнитного поля (взаимоиндукции). И если трансформатор рассчитан на 100 Вт, то он сможет выдать только 100 Вт.

Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.

Деталь оружия. В электрошокерах используются высокие напряжения. И их помогает форматировать высоковольтный трансформатор. А еще он используется в некоторых схемах Гаусс пушки.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: