Что такое электродвижущая сила ЭДС

Объясняем суть ЭДС «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Что такое электродвижущая сила ЭДССхема водонапорной башни

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно,  чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

Что такое электродвижущая сила ЭДСВодокачка

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Что такое электродвижущая сила ЭДССоветская батарейка

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА! Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит. Говорят просто – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Что такое электродвижущая сила ЭДС

Источники электромагнитной энергии (генераторы) – устройства, преобразующие энергию любого неэлектрического вида в электрическую. Такими источниками, например, являю тся :

генераторы на электростанциях (тепловых, ветровых, атомных, гидростанциях), преобразующие механическую энергию в электрическую;

гальванические элементы (батареи) и аккумуляторы всех типов, преобразующие химическую энергию в электрическую и т. п.

ЭДС численно равна работе, которую совершают сторонние силы при перемещении единичного положительного заряда внутри источника или сам источник, проводя единичный положительный заряд по замкнутой цепи.

Электродвижущая сила ЭДС Е — скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. ЭДС Е численно равна работе (энергии) W в джоулях (Дж), затрачиваемой этим полем на перемещение единицы заряда (1 Кл) из одной точки поля в другую.

Единицей измерения ЭДС является вольт (В). Таким образом, ЭДС равна 1 В, если при перемещении заряда в 1 Кл по замкнутой цепи совершается работа в 1 Дж: = I Дж/1 Кл = 1 В.

Перемещение зарядов по участку электрической цепи сопровождается затратой энергии.

Величину, численно равную работе, которую совершает источник, проводя единичный положительный заряд по данному участку цепи, называют напряжением U. Так как цепь состоит из внешнего и внутреннего участков, разграничивают понятия напряжений на внешнем Uвш и внутреннем Uвт участках.

Из сказанного очевидно, что ЭДС источника равна сумме напряжений на внешнем U и внутреннем U участках цепи:

Эта формула выражает закон сохранения энергии для электрической цепи.

Измерить напряжения на различных участках цепи можно только при замкнутой цепи. ЭДС измеряют между зажимами источника при разомкнутой цепи.

Напряжение, ЭДС и падение напряжения для активного двухполюсника

Направление ЭДС — это направление принудительного движения положительных зарядов внутри генератора от минуса к плюсу под действием иной, чем электрическая, природы.

Внутреннее сопротивление генератора это сопротивление конструктивных элементов внутри него.

Идеальный источник ЭДС – генератор, внутреннее сопротивление которого равно нулю, а напряжение на его зажимах не зависит от нагрузки. Мощность идеального источника ЭДС бесконечна.

Условное изображение (электрическая схема) идеального генератора ЭДС величиной Е показано на рис. 1, а.

Реальный источник ЭДС, в отличие от идеального, содержит внутреннее сопротивление Ri и его напряжение зависит от нагрузки (рис. 1., б), а мощность источника конечна. Электрическая схема реального генератора ЭДС представляет собой последовательное соединение идеального генератора ЭДС Е и его внутреннего сопротивления Ri.

Схемы источников ЭДС: а – идеального; б – реального

На практике для того чтобы приблизить режим работы реального генератора ЭДС к режиму работы идеального, внутреннее сопротивление реального генератора Ri стараются делать как можно меньше, а сопротивление нагрузки R н необходимо подключать величиной не менее чем в 10 раз большей величины внутреннего сопротивления генератора , т.е. необходимо выполнять условие: R н >> Ri

Для того чтобы выходное напряжение реального генератора ЭДС не зависело от нагрузки, его стабилизируют применением специальных электронных схем стабилизации напряжения.

Поскольку внутреннее сопротивление реального генератора ЭДС не может быть выполнено бесконечно малым, его минимизируют и выполняют стандартным для возможности согласованного подключения к нему потребителей энергии. В радиотехнике величины стандартного выходного сопротивления генераторов ЭДС составляют 50 Ом (промышленный стандарт) и 75 Ом (бытовой стандарт).

Популярные статьи  Особенности светодиодной подсветки витрин для различных групп товаров

Например, все телевизионные приемники имеют входное сопротивление 75 Ом и подключены к антеннам коаксиальным кабелем именно такого волнового сопротивления.

Для приближения к идеальным генераторам ЭДС источники питающего напряжения, используемые во всей промышленной и бытовой радиоэлектронной аппаратуре, выполняют с применением специальных электронных схем стабилизации выходного напряжения, которые позволяют выдерживать практически неизменное выходное напряжение источника питания в заданном диапазоне токов, потребляемых от источника ЭДС (иногда его называют источником напряжения).

На электрических схемах источники ЭДС изображаются так: Е — источник постоянной ЭДС, е( t) – источник гармонической (переменной) ЭДС в форме функции времени.

Электродвижущая сила Е батареи последовательно соединенных одинаковых элементов равна электродвижущей силе одного элемента Е, умноженной на число элементов n батареи: Е = nЕ.

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

Что такое электродвижущая сила ЭДС

В результате мы получили просто источник ЭДС. Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Чем отличается ЭДС от напряжения

Интересно многие сразу поняли, в чем разница между ЭДС и напряжением? И никого не поправлял учитель (учительница) по физике, когда на практических занятиях говорил (-ла) о том, что мы подключаем именно источник ЭДС, а не напряжения? В большинстве случаев мы с вами путались, потому что и ЭДС, и напряжение измеряется в Вольтах. Так давайте все-таки разберемся, чем принципиально отличается ЭДС от напряжения.

Итак, для начала давайте разберемся, что такое ЭДС

. Электродвижущая сила (ЭДС) — это такая физическая величина, которая характеризует работу сторонних (не потенциальных) сил в источниках переменного либо же постоянного тока.

В замкнутой цепи ЭДС — это работа сил, совершаемая для перемещения единичного заряда вдоль всего контура.

Из выше представленного определения вытекает следующее: источниками ЭДС являются силы, которые не имеют прямое отношение к электростатике, но при этом они являются силами, которые создают движение заряда в замкнутой электрической цепочке.

Например, при механическом вращении обмотки ротора в электромагнитном поле, в ней будет формироваться индукционная ЭДС. При этом формирование ЭДС будет проходить в каждом витке отдельно, но при этом электродвижущая сила соседних витков будет складываться, и на выходе мы будем иметь сумму ЭДС всех витков.

Если посмотреть на аккумуляторные батареи, то в них источником ЭДС является химическая реакция.

Кроме этого источниками могут выступать так называемые элементы Пельтье, в которых ЭДС образуется при термическом нагреве.

Пьезоэффект (когда при механическом воздействии на материал на его концах образуется разность потенциалов) также относится к источникам ЭДС. Впрочем, как и фотоэффект.

Из выше представленных примеров видно, что, применяя различные материалы и способы их взаимодействия, можно получить ЭДС, способную организовать упорядоченное движение заряженных частиц в замкнутом контуре.

Условно принято считать, что ЭДС — это работа в 1 Джоуль, совершаемая при перемещении заряда в 1 Кулон и измеряется в Вольтах.

ЭДС = 1Джоуль/1Кулон= 1 Вольт

Ну а теперь давайте переключим свое внимание на напряжение

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС – сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи. И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

ЭДС в быту и единицы измерения

Другие примеры встречаются в практической жизни любого рядового человека. Под эту категорию попадают такие привычные вещи, как малогабаритные батарейки, а также другие миниатюрные элементы питания. В этом случае рабочая ЭДС формируется за счет химических процессов, протекающих внутри источников постоянного напряжения.

Когда оно возникает на клеммах (полюсах) батареи вследствие внутренних изменений – элемент полностью готов к работе. Со временем величина ЭДС несколько снижается, а внутреннее сопротивление заметно возрастает.

Что такое электродвижущая сила ЭДС

В результате если вы измеряете напряжение на не подключенной ни к чему пальчиковой батарейке вы видите нормальные для неё 1.5В (или около того), но когда к батарейке подключается нагрузка, допустим, вы установили её в какой-то прибор — он не работает.

Почему? Потому что если предположить, что у вольтметра внутреннее сопротивление во много раз выше, чем внутреннее сопротивлении батарейки — то вы измеряли её ЭДС. Когда батарейка начала отдавать ток в нагрузке на её выводах стало не 1.5В, а, допустим, 1.2В — прибору недостаточно ни напряжения, ни тока для нормальной работы. Как раз вот эти 0.3В и упали на внутреннем сопротивлении гальванического элемента. Если батарейка совсем старая и её электроды разрушены, то на клеммах батареи может не быть вообще никакой электродвижущей силы или напряжения — т.е. ноль.

Этот пример наглядно демонстрирует в чем отличие ЭДС и напряжения. То же рассказывает автор в конце видеоролика, который вы видите ниже.

Подробнее о том, как возникает ЭДС гальванического элемента и в чем оно измеряется вы можете узнать в следующем ролике:

Совсем небольшая по величине электродвижущая сила наводится и в рамках антенны приемника, которая усиливается затем специальными каскадами, и мы получаем наш телевизионный, радио и даже Wi-Fi сигнал.

Популярные статьи  Постоянно подключенное электрооборудование: определение, примеры, плюсы и минусы

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Основные понятия и законы электростатики

Закон Кулона:сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности в этом законе

В СИ коэффициент k записывается в виде

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:

 Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением

Электроёмкостью тела называют величину отношения

Основные понятия и законы постоянного тока

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:

Закон Ома для участка цепи имеет вид:

 При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.Закон Джоуля-Ленца:

Основные понятия и законы магнитостатики

 Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле. Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции. Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:

Основные понятия и законы электромагнитной индукции

 Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:

Электромагнитные колебания и волны

Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).

 Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой

 Период свободных колебаний в контуре определяется формулой Томсона:

 Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:

Источники ЭДС и тока: основные характеристики и отличия

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.

Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Катушки индуктивности, по которым проходил ток в течение некоторого времени после снятия питания со схемы. Быстрое отключение индуктивной нагрузки (резкое возрастание сопротивления) может привести к пробою зазора.

Генератор тока, собранный на биполярных транзисторах, управляемый напряжением или током.

В различной литературе источники тока и напряжения могут обозначаться неодинаково.

Виды обозначений источников тока и напряжения на схемах

Не пропустите обновления, подпишитесь на наши соцсети:

Популярные статьи  ПТЭ электрических станций и сетей

Объясняем суть ЭДС “на пальцах”

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно, чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Задачи на применение закона Фарадея

Пример 1

Условие: проволочный контур помещен в магнитное поле. В нулевой момент времени он пронизывает поток магнитной индукции, равный Φ1 и уменьшающийся после этого до . Найдите величину заряда, проходящего по цепи.

Решение

Начнем с определения мгновенного значения ЭДС. Это можно сделать с помощью формулы:

εi=-dΦdt.

Вспомним закон Ома. Согласно ему, мгновенное значение силы тока может быть записано в следующем виде:

I=-1RdΦdt.

Полное сопротивление цепи здесь обозначено буквой R.

Для нахождения заряда, идущего по цепи, нам пригодится выражение:

q=∫Idt.

Поставим эти выражения в нужную формулу и получим:

q=-1R∫Φ1dΦ=ΦR.

Автором этой формулы является Фарадей. Он эмпирически подтвердил прямую пропорциональность величины заряда, идущего по цепи, количеству линий магнитной индукции, пересекающей проводник, и его обратную пропорциональность величине сопротивления в цепи.

Ответ: q=ΦR.

Пример 2

Условие: квадратная рамка со стороной a помещена в одну плоскость с проводником, сила тока которого равна l. Она движется поступательно с постоянной скоростью v в направлении, обозначенное на иллюстрации ниже. Вычислите ЭДС индукции как функцию εi от расстояния x.

Рисунок 1

Решение

Найти ответ можно с помощью закона Фарадея.

εi=-dΦdt.

Для получения искомой функции Ei(x) нам нужно построить функцию Ф(x). Бесконечный проводник с током создает магнитное поле, которое может быть выражено так:

B=μI2πr.

Расстояние до точки рассмотрения здесь обозначено буквой r.

Для решения нам нужно также выделить площадь рамки. Выразим ее такой формулой:

dS=adr.

С учетом приведенных выше выражений, а также того факта, что B→⊥S→, мы можем найти величину элементарного магнитного потока, проходящего через элемент квадратной рамки, так:

dΦ=BdS=μI2πradr.

Далее вычисляем величину полного потока, учитывая, что x≤r≤x+a:

Φ=∫xx+aμI2πradr=μIa2πlnx+ax.

После этого переходим к нахождению ЭДС индукции с помощью закона Фарадея и выражения для магнитного потока, выведенного ранее:

εi=-dΦdx·dxdt=-μIa2π·xx+a(x-1-(x+a)x-2)·υ==-μIa2π·xx+ax-x-ax2=μIa2υ2π(x+a)x.

Ответ: εi=μIa2υ2π(x+a)x.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

ЭДС и закон Ома[ | ]

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи

имеет вид: φ 1 − φ 2 + E = I R , {\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,} где φ 1 − φ 2 {\displaystyle \varphi _{1}-\varphi _{2}} — разность между значениями потенциала в начале и в конце участка цепи, I {\displaystyle I} — сила тока, текущего по участку, а R {\displaystyle R} — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ 1 − φ 2 = 0 {\displaystyle \varphi _{1}-\varphi _{2}=0} и предыдущая формула переходит в формулу закона Ома для замкнутой цепи

: E = I R , {\displaystyle {\mathcal {E}}=IR,} где теперь R {\displaystyle R} — полное

сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи ( R e {\displaystyle R_{e}} ) и внутреннего сопротивления самого́ источника тока ( r {\displaystyle r} ). С учётом этого следует:

E = I R e + I r . {\displaystyle {\mathcal {E}}=IR_{e}+Ir.}

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  • Химическая ЭДС. Возникает в батарейках и аккумуляторах вследствие химических реакций.
  • Термо ЭДС. Возникает, когда находящиеся при разных температурах контакты разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Будет интересно Что такое мощность электрического тока и как ее рассчитать

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Опыт демонстрирует появление ЭДС в катушке при воздействии изменяющегося магнитного поля постоянного магнита. Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

Что такое электродвижущая сила ЭДС
Что такое самоиндукция.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора. Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Что такое электродвижущая сила ЭДС
Таблица параметров электродвижущей силы индукции.

Оцените статью