Тиристорный преобразователь

Содержание

Принцип действия и конструктивные особенности

Чтобы преобразовать нагрузку применяют тиристорный преобразователь цепей высокого напряжения на основе IGBT. Частотный преобразователь на тиристорах – это прибор преобразования тока, регулировки его параметров и уровня тока. Частотным преобразователем можно выровнять значения параметров приводов на электромоторах: угол, обороты вала при запуске и другие.

Тиристорный преобразователь

Схема тиристорного выравнивателя.

Для мотора постоянного тока используют преобразователь на тиристорах. Достоинства этого прибора позволили создать ему широкое применение. К преимуществам относятся:

  • КПД (95%) у марки ПН-500.
  • Область контроля: мотора от малых мощностей до мегаватт.
  • Может выдерживать значительные импульсы нагрузок запуска двигателя.
  • Долговечная и надежная эксплуатация.
  • Точность.

Недостатки имеются и у этой системы. Мощность находится на низшем уровне. Это проявляется при точном регулировании процесса производства. В качестве компенсации используют дополнительные устройства. Такой частотный преобразователь не может работать без помех. Это видно при эксплуатации чувствительных приборов электрооборудования и радиотехнических устройств.

Составные части:

  1. Реактор в виде трансформатора.
  2. Блоки выпрямления тока.
  3. Реактор для сглаживания преобразования.
  4. Перенапряжение не воздействует на защиту.

Преобразователи (2017 г) подключаются через реактор. Трансформатор служит для согласования звена напряжения выхода и входа, выравнивания между ними напряжения. Схема электрического соединения включает в себя реактор для сглаживания. Частотный преобразователь имеет схему, в которой есть сглаживающий реактор.

Частотник пропускает нагрузку. Нагрузка идет в блоки выпрямителя в выходное звено. Чтобы выровнять питание нескольких устройств подключают индукционные потребители на специальных шинах.

Преобразователи частоты бывают двух типов – высокочастотные и низкочастотные. Подбор нужной модели осуществляется по необходимым параметрам цепей электроэнергии. В 3-фазных станках тип подключения иной. 1-фазный ток переносит воздействия, но КПД теряется на преобразовании 3-фазного тока.

Система применяется в плавильном производстве, контроле подъемно-транспортных устройствах, сварочном производстве. Такой принцип работы нагрузки реализовывает систему двигателя с генератором. На наименьших оборотах двигателя происходит регулировка оборотов шпинделя в широком диапазоне, настройка разных характеристик привода мотора.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление. 

Пуск и остановка электродвигателя осуществляются с панели или пульта управления частотника. При этом преобразователь осуществляет регулировку частоты вращения и остановку при возникновении аварийных ситуаций автоматически.

2) Внешнее управление. 

ЧП с поддержкой интерфейсов передачи данных можно подключать к удаленному ПК для контроля текущих параметров и задания режимов работы привода.

3) Управление по дискретным входам или “сухим контактам”. 

4) Управление по событиям. 

Некоторые модели ЧП позволяют запрограммировать время пуска или остановки, работу двигателя в другом режиме. Преобразователи такого типа применяют для полностью или частично автоматизированного технологического оборудования.

Тиристорный преобразователь

Преимущества частотных преобразователей.

Основные преимущества использования частотных преобразователей:

1) Экономия электроэнергии. 

Применение ЧП позволяет снизить пусковые токи и регулировать потребляемую мощность двигателя в зависимости от фактической нагрузки.

2) Увеличение срока службы промышленного оборудования. 

Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межремонтный интервал и продлить срок эксплуатации электродвигателей.

Возможность отказаться от редукторов, дросселирующих задвижек, электромагнитных тормозов и другой регулирующей аппаратуры. снижающей надежность и увеличивающей энергопотребление оборудования.   

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом. 

5) Широкий диапазон мощности двигателей. 

Частотные преобразователи устанавливают как на однофазные конденсаторные двигатели мощностью менее 1 кВт, так и на синхронные электромашины мощностью в десятки МВт.

6) Защита электродвигателя от аварий и аномальных режимов работы. 

ЧП комплектуют защитой от перегрузок, коротких замыканий, пропадания фаз. Преобразователи также обеспечивают перезапуск при возобновлении подачи электроэнергии после ее отключения.

Возможность бесступенчатой точной регулировки частоты вращения без потерь мощности, что невозможно при использовании редукторов. 

7) Снижение уровня шума работающего двигателя.

Возможность замены двигателей постоянного тока асинхронными электрическими машинами с частотными регуляторами. Для оборудования, требующего регулировки момента и скорости вращения, часто используются двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Такие электрические машины стоят дороже асинхронных и требуют дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные электромашины с частотным управлением дает хороший экономический эффект.

Тиристорный преобразователь

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Тиристорный преобразователь

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Тиристорный преобразователь

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Тиристорный преобразователь

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Тиристорный преобразователь

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

Разновидности преобразователей

Тиристорный преобразователь

  • специальные устройства для дома;
  • высоковольтное и высокочастотное оборудование;
  • бестрансформаторные и инверторные импульсные устройства;
  • преобразователи постоянного напряжения;
  • регулируемые аппараты.

К этой же категории электронных приборов относят преобразователи тока в напряжение.

Аппаратура для дома

С этим типом преобразовательных устройств рядовой пользователь сталкивается постоянно, поскольку в большинстве моделей современной техники имеется встроенный блок питания. К тому же классу относятся бесперебойные источники питания (БИП), имеющие встроенный аккумулятор.

В отдельных случаях бытовые преобразователи выполняются по двойной кольцевой (инверторной) схеме.

За счет такого преобразования от источника постоянного тока (аккумулятора, например), удается получить на выходе переменное напряжение стандартной величины 220 Вольт. Особенностью электронных схем является возможность получения на выходе чисто синусоидального сигнала постоянной амплитуды.

Регулируемые устройства

Эти агрегаты способны значение выходного напряжения и повышать его. На практике чаще встречаются аппараты, позволяющие плавно изменять пониженное значение выходного потенциала.

Классическим является случай, когда на входе действует 220 Вольт, а на выходе получается регулируемое постоянное напряжение величиной от 2-х до 30 Вольт.

Бестрансформаторные приборы

Бестрансформаторные (инверторные) агрегаты построены по электронному принципу, предполагающему применение отдельного модуля управления. В качестве промежуточного звена в них используется преобразователь частоты, приводящий сигнал на выходе к удобному для выпрямления виду. В современных образцах инверторного оборудования нередко устанавливаются программируемые микроконтроллеры, существенно повышающие качество управление преобразованием.

Высоковольтные устройства представлены уже описанными станционными трансформаторами, повышающими и понижающими передаваемое напряжение в нужных соотношениях.

При передаче энергии по высоковольтным линиям и последующей трансформации стремятся свести ее потери в ваттах к минимуму.

К этому же классу относятся устройства, формирующие сигнал для управления лучом в телевизионной трубке (кинескопе).

Как сделать преобразователь частоты собственноручно

Многие любители пробуют изготавливать преобразователи частоты своими руками.

Тиристорный преобразователь

Схема хорошо работает с мотором мощностью до 1 кВт, российского и зарубежного производства.

Для изготовления инвертора понадобятся следующие детали:

  • микросхемы: К155ЛА3, К155ИЕ4, К155ЛП5;
  • транзисторы: КТ315 (3 шт.), КТ817В (3шт.);
  • диоды: КД105Г – 3 шт.;
  • резисторы сопротивлением: 10 кОм (3 шт.), 6,2 кОм (3 шт.), 1 кОм (3 шт.), 220 Ом и переменный резистор на 1 кОм;
  • конденсаторы: 0,33 и 0,1 мкФ;
  • электролитические конденсаторы: 100 мкФ*10 В и 1000 мкФ*50 В.

Этому частотнику, своими руками изготовленному, обязательно нужен блок питания на 27 В и 5 В постоянного напряжения. Электродвигатель подключают согласно схеме.

Тиристорный преобразователь

Если обращаться к современным технологиям, то создание инвертора можно выполнять на базе платформы Ардуино. Регуляторы частоты – незаменимая вещь для управления электроприводом, как в бытовых, так и в промышленных условиях.

Самодельный преобразователь частоты на тиристорах

Я взял двигатель асинхронного типа мощностью 2 кВт. Все собирал самостоятельно. Нужно было получить из сети в 220 вольт три фазы для управления электродвигателем. Нужно было управлять оборотами двигателя, не получать скачков выходного напряжения.

Посмотрев информацию в Интернете, нашел схемы различного рода. Предлагается очень много разных вариантов. Я остановился именно на этой схеме, так как его мощность до 4 кВт, функции защиты работают нормально.

Я взял корпус от системного блока компьютера и вмонтировал в него все детали. Можно было сэкономить, и сделать по-другому, но у меня уже был этот шкаф. Блок питания я покупал отдельно.

Тиристорный преобразователь

Хотя можно было собрать схему блока питания самому. Ни с кем не советовался и сам начал собирать. Собрал набор конденсаторов с реле, диодный мост с полевыми транзисторами. Установил вентилятор охлаждения на случай, если будет двигатель нагрузки 4 кВт, и будет нагреваться. При двигателях 2-3 кВт преобразователь работает нормально, никаких проблем с нагревом нет. Я решил сделать так, чтобы вентилятор не работал постоянно, так как он будет засасывать в шкаф пыль, потом его надо будет чистить. Решил сделать так, чтобы кулер включался и выключался при определенных температурах.

Для этого я сделал небольшую плату регулировки с реле, хотя можно тоже ее купить. За полдня собрал эту плату из имеющихся деталей. В шкафу имеется шунт, который настроен для двигателя 4 кВт. Если будет перегрузка по току, то двигатель выключится. Плата преобразователя сделана на микроконтроллере. Если поменять контроллер и поставить кварц на 20 мГц и два конденсатора в обвязке кварца, то можно поменять прошивку, вынести на панель корпуса монитор, ручку регулятора оборотов. При работе можно будет изменять частоту.

Тиристорный преобразователь

Но я делать этого не стал, так как нужны были дополнительные деньги. Этот частотник мне обошелся около трех тысяч рублей, это на 2017 год. Заводской преобразователь на тиристорах такого же класса, пусть даже в меньшем корпусе обошелся бы около 7-10 тысяч рублей. Это зависит от бренда изготовителя.

Такой частотный преобразователь можно применять на станках с ЧПУ на шпиндель, вывести контроль на пульт управления. Проверим, как он работает. Включаем старт, двигатель плавно включился и работает. Выключаем его, затем включаем реверс и повторяем операции. Все работает нормально.

Недавно купил выпрямитель за 1000 рублей. Это недорого для тиристорного выпрямителя. Такие диоды приходится заказывать из других регионов. Если управляющий электрод замкнуть на анод, то он превращается в диод. Если убираем, то превращается в тиристор. Если к проводам припаять плату управления, то им можно управлять. Получается тиристорный выпрямитель. Я поставил его на сварочный аппарат. На ручную дуговую сварку не стоит ставить тиристорный выпрямитель, так как при сварке большие пульсации, сварочный шов получается плохого качества. Для полуавтомата тиристоры подойдут, там пульсации не важны.

История развития и области применения

Тиристорный преобразователь
Выпрямитель на кремниевых диодах с естественным охлаждением на железнодорожной тяговой подстанции

Первыми на электрическом транспорте получили распространение ртутные (игнитронные) выпрямители, применявшиеся на тяговых подстанциях для преобразования тока промышленной частоты в постоянный. Они использовались также для питания тяговых двигателей на первых электровозах переменного тока. До 1960-х годов ртутные выпрямители оставались единственными аппаратами, имевшими массовое распространение.

Ртутные выпрямители имели ряд недостатков, главными из которых были большие габариты и опасность выделения ртутных паров при повреждении корпуса аппарата. По мере появления кремниевых и германиевых вентилей ртутные выпрямительные установки были заменены полупроводниковыми. Полупроводниковые диодные выпрямители до сих пор широко применяются на тяговых подстанциях постоянного тока, электровозах переменного тока, тепловозах с передачей переменно-постоянного тока.

С 1960-х годов предпринимались попытки создания бестрансформаторных преобразователей постоянного тока и инверторов на основе тиристоров, но преобразователи на их основе имели низкую надежность, высокую стоимость и большие габариты, что сдерживало их массовое применение. Сдерживал их распространение и низкий технический уровень большинства эксплуатационных предприятий. Отдельные полупроводниковые приборы имели малое напряжение пробоя и номинальный ток, что приводило к необходимости применения в силовых преобразователях сборок с большим числом приборов. Предлагались схемы ЭПС, в которых тиристорные преобразователи тягового тока использовались совместно с контактными аппаратами, а иногда и с реостатным регулированием для уменьшения числа ступеней и повышения плавности регулирования, однако они не получили массового применения.

Основными областями применения тиристорных преобразователей были управляемые выпрямители на тяговых подстанциях, где требования к массогабаритным характеристикам менее жесткие, а также преобразователи собственных нужд и регуляторы поля тяговых двигателей на подвижном составе, так как в этих цепях коммутируемые токи сравнительно малы.

С 1974 года серийно строились электровозы ВЛ80р, на которых тиристорный преобразователь использовался не только для плавного регулирования тока тяговых двигателей, но и был способен работать в режиме инвертора, обеспечивая рекуперацию. На городском транспорте СССР массовое применение тяговых статических преобразователей на основе тиристоров началось только с середины 80-х годов.

Начиная с 2000-х годов в России массово строится подвижной состав ГЭТ и метрополитена с тяговыми преобразователями на основе IGBT-транзисторов, как изменяющих напряжение постоянного тока на коллекторных двигателях, так и автономных инверторов для питания асинхронных тяговых двигателей.

На железной дороге в 1990-х и 2000-х годах испытывались и эксплуатировались опытные образцы и малые серии (например, ЭП10) подвижного состава с преобразователями зарубежного производства на основе вентилей GTO, но массовое применение тяговых статических преобразователей на современной элементной базе начато только с серийным производством электровозов 2ЭС10 в 2012 году.

Принцип действия нагрузки. Схема 3-фазного частотника

На схеме изображена электроэнергия эксплуатации частотника. Подобную диаграмму делают для мостовой схемы. Она чаще применяется при конструировании частотника для нагрузки оборудования и станков. Напряжение фазы в схеме увеличено.

Тиристорный преобразователь

Схема с одной фазой применяется для линии питания, эксплуатации механизма с большим сопротивлением индуктивности. Она действует в интервале мощности 10 – 20 кВт, редко при значительных мощностях. Для электропечи или станка в быту применяется такую схему:

Тиристорный преобразователь

Схема цепей с тремя фазами используется для механизмов на 20 кВт, моторов синхронных, экскаваторов и кранов. Популярной схемой с несколькими фазами 6-фазная схема. Она предусматривает применение уравнителя малого потенциала и большого тока. Прибор с током проводит и изменяет электроэнергию параллельно, в отличие от многих подобных устройств. Сделать его трудно, однако надежность у него больше, чем на тиристорах с одной фазой. Этот контроллер с реверсом имеет негативную сторону – КПД у него составляет меньше 70%.

Свой тиристорный преобразователь частоты изготовить, возможно, в зависимости от основы применения. На рисунке показана схема на базе Micro-Cap 9. Основным достоинством является необходимость в нагрузке нескольких узлов совместно.

Схема 3-фазного частотника

Преобразователи напряжения импульсные

Тиристорные трехфазные преобразователи частоты используются для управления мощной нагрузкой и находят применение там, где нет возможности включения оборудования на IGBT транзисторах.

Различают два класса устройств по принципу коммутации управляющих элементов:

  • С одноступенчатой коммутацией;
  • Двухступенчатые.

Одноступенчатые устройства отличаются простой схемотехникой, но не обладают возможностью регулировки выходного напряжения, поскольку управление производится всеми тиристорами одновременно. Регулирование напряжения идет путем установки в цепи постоянного питающего напряжения через установку регулируемого выпрямителя.

В свою очередь, двухступенчатые преобразователи делятся на схемы:

  • С групповой коммутацией;
  • С пофазной коммутацией;
  • С индивидуальным управлением.

Данные устройства сложнее не только схемой управления, но и силовой частью, поскольку в них присутствует две группы тиристоров: анодные и катодные.

Пофазная коммутация

Управление осуществляется раздельно по каждой фазе преобразования путем отключения анодного или катодного тиристора.

Индивидуальная коммутация

Здесь управление производится каждым тиристором преобразователя раздельно. За счет индивидуального управления можно реализовывать большое число алгоритмов преобразования, снижать до минимума искажения формы сигнала и уровень электромагнитных помех.

Популярные статьи  Преимущества контроллеров Сименс
Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: