Заряд и разряд конденсатора

Состояния устройства и алгоритм работы

Устройство может находиться в одном из четырех состояний.

  1. ОТКЛ – оба реле обесточены. Резистор R_CD соединяет выход схемы с землей.
     
  2. ЗАРЯД – подано входное напряжение. Relay_CHRG включается сразу и подключает вывод резистора R_CD (1) ко входу. Вывод резистора R_CD (2) пока подключен к конденсатору C_F. Конденсатор C_F начинает процесс заряда через этот резистор. Relay_CHRG отрабатывает задержку, и за это время конденсатор успевает зарядиться через резистор до некоторого напряжения, при котором переход на прямое подключение (состояние РАБОТА) не вызывает сильного броска тока.
     
  3. РАБОТА – основное состояние. Оба реле под полным напряжением, конденсатор C_F подключен к входному напряжению напрямую, резистор R_CD зашунтирован контактами реле.
     
  4. РАЗРЯД – состоит из двух фаз: Разряд_А и Разряд_Б.
  • Разряд_А – входное напряжение отключено, реле разряда отключается сразу и подключает вывод резистора R_CD (1) к земле.
    Реле заряда находится во включенном состоянии за счет напряжение на конденсаторе C_DELAY. C_DELAY разряжается через обмотку реле заряда и через D2 и обмотку реле разряда, отрабатывается задержка отключения, и по ее окончании вывод резистора R_CD (2) подключается к конденсатору C_F. В процессе разряда обмотки обоих реле соединяются параллельно через диод D2, что заметно ускоряет процесс разряда конденсатора C_DELAY и уменьшает время начала фазы Разряд_Б.
     
  • Разряд_Б – реле заряда отключается и разряжает C_F через резистор R_CD на землю.
    Временные диаграммы напряжений в различных узлах схемы показаны на Рисунке 2.
Заряд и разряд конденсатора
Рисунок 2. Временные диаграммы напряжений в различных узлах схемы. VIN – входное напряжение,
VOUT – выходное напряжение, V_CHRG – напряжение на обмотке реле заряда,
V_DSCHRG – напряжение на обмотке реле разряда.

Формула

Нахождение тока конденсаторного заряда происходит по формуле, представленной ниже. Измеряется он в фарадах, что равно кулону или вольту.

Формула нахождения заряда конденсатора

В целомэто элемент электросети, накапливающий и сохраняющий напряжение в ней. Бывает разного типа и размера, к примеру, электролитическим, керамическим и танталовым. Состоит, в основном, из нескольких токопроводящих обкладок с диэлектриком. Его емкость зависит от размеров диэлектрика и заполнителя между обкладками. Заряжается благодаря электричеству. Определить ток конденсаторного заряда можно измерительными приборами и формулой.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

Заряд и разряд конденсатора

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

Заряд и разряд конденсатора

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Заряд и разряд конденсатора

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Заряд и разряд конденсатора

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Заряд и разряд конденсатора

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник

От чего зависит емкость

Емкость это свойство накопления и удержания электрозаряда. Чем она больше, тем больше заряд, увеличивающий вместимость сосуда с газовым баллоном. Она зависит от того, какова форма и размер электродов. Также зависит от того, какое расположение и свойство имеет диэлектрик, разделяющий электрод. Есть плоский конденсаторный источник с параллельной и цилиндрической пластиной.

Имеет не только специально предусмотренное устройство, но и несколько проводников, которые разделены при помощи диэлектрика. Емкость существенно влияет на электротехнические установки переменного тока. К примеру, источник с определенной емкостью имеется электрический провод с живым электрическим кабелем, жилой и металлической кабельной оболочкой.

Заряд и разряд конденсатора
От чего зависит емкость

ЭКСПЕРИМЕНТ 1

Определение ёмкости конденсатора методом разрядки

Заряд и разряд конденсатора
1.Соберите на рабочей части экрана замкнутую электрическую цепь, показанную ниже на рис.2. Для этого сначала щёлкните мышью на кнопке э.д.с.,расположенной в правой части окна эксперимента. Переместите маркер мыши на рабочую часть экрана, где расположены точки, и щёлкните маркером мыши в виде вытянутого указательного пальца в том месте, где должен быть расположен источник тока. Подведите маркер мыши к движку появившегося регулятора э.д.с., нажмите на левую кнопку мыши, удерживая её в нажатом состоянии, меняйте величину э.д.с. и установите 10 В. Аналогичным образом включите в цепь 4 других источника тока. Суммарная величина э.д.с. батареи должна соответствовать значению, указанному в таблице 1 для вашего варианта.

Таким же образом разместите далее на рабочей части экрана 7 ламп Л1-Л7 ( кнопка ), Ключ К (кнопка ), вольтметр (кнопка ), амперметр (кнопка ), конденсатор (кнопка ). Все элементы электрической цепи соедините по схеме рис.1 с помощью монтажных проводов (кнопка ).

2. Щёлкните мышью на кнопке «Старт». Должна засветиться лампа Л7, а надпись на кнопке измениться на «Стоп». Курсором мыши замкните ключ К.

3. После установления в цепи стационарного тока ( должны погаснуть лампы Л5 и Л6 и светиться лампы Л1-Л4) запишите показания электроизмерительных приборов в таблицу 2.

4. Нажмите на кнопку «Стоп» и курсором мыши разомкните ключ К.

5. Двумя короткими щелчками мыши на кнопке «Старт» запустите и остановите процесс разрядки конденсатора. Показания амперметра будут соответствовать начальному току разрядки конденсатора I0. Запишите это значение в таблицу 3.

6. Вновь замкните ключ, зарядите конденсатор и повторите п.п. 5, 6 ещё 4 раза.

7. Для каждого опыта рассчитайте It= I0/2,7- силу тока, которая должна быть в цепи разрядки конденсатора через время релаксации t и запишите эти значения в таблицу 3.

Популярные статьи  Расчет тока по закону Ома

8. При разомкнутом ключе нажатием кнопки «Старт» запустите процесс разрядки конденсатора и одновременно включите секундомер.

9. Внимательно наблюдайте за изменением показаний амперметра в процессе разрядки конденсатора. Остановите секундомер и синхронно нажмите кнопку «Стоп» при показании амперметра, равном или близким к It. Запишите это значение времени t1 в таблицу 3.

10. Проделайте опыты п.п.8, 9 ещё 4 раза.

Таблица 1. Суммарное значение э.д.с. источников тока

Вариант 1 2 3 4 5 6 7 8
Э.д.с.,В 50 49 48 47 46 45 44 43

Таблица 2. Определение сопротивления лампы.

№п/п I, А U, В R, Ом
Номер опыта 1 2 3 4 5 Среднее

значение

I0, А
It, А
t, с
C, Ф

Таблица 3. Результаты измерений и расчётов.

ОБРАБОТКА РЕЗУЛЬТАТОВ:

1. По закону Ома для участка цепи Л1-Л4: и результатам измерений, приведённым в таблице 2, определите сопротивление одной лампы.

2. По формуле (при разрядке конденсатора квазистационарный ток протекает по 6 последовательно соединённым лампам) определите ёмкость конденсатора и запишите эти значения в таблицу 3.

3. Рассчитайте погрешности измерений и сформулируйте выводы по результатам проделанной работы.

Схемы подключения контактора

Контакторы выпускаются многими производителями электротехнической продукции и имеют разные типы и исполнение

При подключении такого устройства важно строго руководствоваться рекомендациями завода-изготовителя и нормативной электротехнической документацией. В инструкции и на самом корпусе прибора в обязательном порядке будет располагаться схема подключения данного механизма и его главные характеристики. Разобраться в этой электрической схеме профессиональному электрику не составит никакого труда, а вот неспециалисту придется немного постараться

Разобраться в этой электрической схеме профессиональному электрику не составит никакого труда, а вот неспециалисту придется немного постараться.

Независимо от того каким-образом подключается контактор в системе обязательно используется два вида сети: силовая и сигнальная. Сигнальная линия запускает сам контактор, а он в свою очередь замыкает силовую линию.

При подключении к мощным асинхронным двигателям важно подключать последовательно с контактором тепловое реле, для защиты двигателя от перегрева и автомат для защиты от короткого замыкания. Разобраться в назначении, конструкции и принципах работы данного сложного устройства оказалось совсем не сложно. Важно помнить, что правильно подключённый прибор – залог долгой и безопасной службы контактора

При подключении необходимо работать только при отключенном электропитании, помнить о мерах электробезопасности и общих правилах охраны труда, и строго их выполнять. А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства

Важно помнить, что правильно подключённый прибор – залог долгой и безопасной службы контактора. При подключении необходимо работать только при отключенном электропитании, помнить о мерах электробезопасности и общих правилах охраны труда, и строго их выполнять

А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства

Советуем изучить Пассатижи и плоскогубцы

Разобраться в назначении, конструкции и принципах работы данного сложного устройства оказалось совсем не сложно

Важно помнить, что правильно подключённый прибор – залог долгой и безопасной службы контактора. При подключении необходимо работать только при отключенном электропитании, помнить о мерах электробезопасности и общих правилах охраны труда, и строго их выполнять. А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства

А если что-то в работе или подключении этого прибора вам все же осталось непонятно, то лучшим вариантом будет обратиться к профессиональным электрикам для подключения данного устройства.

Что такое конденсатор

Конденсатор – это двухполюсное устройство, имеющее постоянное или переменное емкостное значение и малую проводимость. Это элемент цепи, служащий накопителем энергии, что формирует электрическое поле; пассивный электронный компонент любого подключения. Содержит в себе несколько металлических электродов или обкладок, между которыми находится диэлектрик. Может иметь пакетную, трубчатую, дисковую, литую секционированную и рулонную конструкцию.

Заряд и разряд конденсатора
Конденсатор

Конденсатор имеет в плоскую или цилиндрическую форму. Плоское устройство состоит из относительно далеко расположенных друг от друга пластин, а цилиндрический – из нескольких полых коаксиальных проводящих цилиндров с радиусами r1 и r2 (основное условие – r1 > r2).

Заряд и разряд конденсатора
Термин из учебного пособия

Чему будет равен максимальный заряд конденсатора

Колебательный контур, состоящий из катушки индуктивности и конденсатора, настроен на длину волны м . Если максимальный ток в цепи I=0,02 А, то максимальный заряд конденсатора равен ———————————————————————————————————————- где: — скорость распространения электромагнитного поля (на сколько я понял в данном случае в вакууме) — индуктивность контура — ёмкость контура

где: I-максимальная сила тока в контуре w — циклическая частота q — амплитудное значение заряда

из формулы 1) можно найти зная можно найти «q — амплитудное значение заряда» «q — амплитудное значение заряда» это и будет «максимальным зарядом конденсатора» ?

Чему равен модуль Юнга Магнитофонная лента имеет толщину d=5 мкм и ширину b=5 мм. Если к ленте длиной L=0.7 м подвесить.

Чему равен наибольший потенциал Чему равен наибольший потенциал, приобретаемый отрицательно заряженной металлической пластинкой .

Чему равен период колебаний частицы? Прошу распишите как решать эти задаче никак не могу их решить Задача 1 Частица, совершающая.

Чему равен радиус диска, если период его колебаний 2 с? на гвозде, вбитом в стену, висит диск так, что точка подвеса находится на расстоянии 1/6 радиуса от.

Источник

Электроемкость проводников

Проводники умеют не только проводить через себя электрический ток, но и накапливать заряд. Эта способность характеризуется таким параметром, как электроемкость.

Электроемкость

C = q/φ

С — электроемкость

q — электрический заряд

φ — потенциал

Особенность этой величины в том, что она зависит от формы проводника. Для каждого вида проводников есть своя формула расчета электроемкости. Самая популярная — формула электроемкости шара.

Электроемкость шара

C = 4πεε0r

С — электроемкость

ε — относительная диэлектрическая проницаемость среды

ε0 — электрическая постоянная

ε0 = 8,85 × 10-12 Ф/м

r — радиус шара

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Характеристика и схема подключения электросчётчика СО-505

Заряд и разряд

Процесс зарядки конденсатора не может быть мгновенным. Его время зависит от силы тока и электроёмкости. При подключении источника питания на одном проводнике собираются электроны, а на другом — остаются протоны. Так как между обкладками находится диэлектрик, то заряженные частицы не могут перейти на противоположную сторону. Но вместе с тем, электроны поступают от источника напряжения на пластины, поэтому ток в цепи всё же есть.

В начале периода зарядки разность потенциалов между обкладками равняется нулю. Как только на пластины переходят заряженные частицы, возникает напряжение. Происходит это из-за диэлектрика, который не даёт притягивающимся друг к другу зарядам перейти на другую сторону. В момент заряда конденсатора на его обкладках много свободного места. Электрический ток в этот момент не встречает сопротивления, и его величина достигает максимального значения. По мере разделения заряженных частиц сила тока снижается. Это происходит до тех пор, пока не исчезнет свободное место на обкладках конденсатора.

То время, которое проходит между начальным состоянием и полного заряда, называют переходным периодом заряда конденсатора. В его конце прекращается рост напряжения, и оно становится равным значению, выдаваемому источником питания. Если нарисовать зависимости тока и напряжения заряда от времени на графике, то можно будет увидеть, что их изменения проходят зеркально по отношению друг к другу.

Формула, по которой можно рассчитать, как происходит заряд конденсатора выглядит так: I = C * V / t, где:

  • I — сила тока;
  • С — ёмкость конденсатора;
  • V / t — изменение напряжения за время.

Как только источник питания будет отключён, то вся энергия, запасённая конденсатором, будет отдана в нагрузку. Фактически устройство само на этом моменте превращается в источник питания. Электроны из-за силы притяжения существующей между разноимёнными частицами, начнут перемещаться в сторону положительно заряженной обкладки.

Но в тот момент, когда в цепи появится ток, конденсатор начнёт отдавать энергию, а напряжение на его выводах станет падать. Следовательно, сила тока тоже снизится. При этом время зарядки и разрядки конденсатора определяется двумя параметрами — ёмкостью и сопротивлением цепи.

Источник

Слободянюк А.И. Физика 10/16.4

Заряд и разряд конденсатора

Предыдующая страница

16.4 Зарядка конденсатора от источника постоянной ЭДС

Рассмотренный в предыдущем разделе процесс зарядки конденсатора посредством перенесения заряда с одной обкладки на другую имеет исключительно теоретический интерес, как метод расчета энергии конденсатора. Реально конденсаторы заряжают, подключая их к источнику ЭДС, например, к гальванической батарее.

Пусть конденсатор емкостью C подключен к источнику, ЭДС которого равна ε

(Рис. 145). Полное электрическое соединение цепи (включающее и внутренне сопротивление источника) обозначим R

. При замыкании ключа в цепи пойдет электрический ток, благодаря которому на зарядках конденсатора будет накапливаться электрический заряд. По закону Ома сумма напряжений на конденсаторе \(

U_C = \frac\) и резисторе \(U_R = IR\) равна ЭДС источника \(\varepsilon = U_C + U_R\), что приводит к уравнению

IR = \varepsilon — \frac\) . (1)

В этом уравнении заряд конденсатора и сила тока зависят от времени. Скорость изменения заряда конденсатора по определению равна силе тока в цепи \(

I = \frac\), что позволяет получить уравнение, описывающее изменение заряда конденсатора с течением времени

Можно также получить уравнение, непосредственно описывающее изменение силы тока в цепи с течением времени. Для этого на основании уравнения (1) запишем уравнения для малых изменений входящих величин

\Delta \varepsilon = \Delta (IR) + \Delta \left (\frac \right )\) .

Формально эту операцию можно описать следующим образом: уравнение (1) следует записать для двух моментов времени t

и ( t

+ Δt ), а затем из второго уравнения вычесть первое. Так как ЭДС источника постоянна, то ее изменение равно нулю Δε = 0, сопротивление цепи и емкость конденсатора постоянны, поэтому их можно вынести из под знака изменения Δ , поэтому полученное уравнение приобретает вид

R \Delta I = — \frac \Delta q\) .

Наконец разделим его на промежуток времени, в течение которого произошли эти изменения, в результате получаем искомое уравнение (с учетом связи между силой тока и изменения заряда)

Математическая смысл этого уравнения указывает, что скорость уменьшения тока пропорциональна самой силе тока. Для однозначного решения этого уравнения необходимо задать начальное условие – значение силы тока в начальный момент времени I

С уравнениями такого типа мы познакомились в «математическом отступлении», поэтому здесь его анализ проведем кратко.

В начальный момент времени, когда заряд конденсатора равен нулю, скорость возрастания заряда (то есть сила тока) максимальна и равна \(

Затем по мере накопления заряда сила тока будет уменьшаться, когда напряжение на конденсаторе станет равным ЭДС источника, заряд конденсатора достигнет максимального стационарного значения \(

\overline = C\varepsilon\) и ток в цепи прекратится.

Схематически зависимости заряда конденсатора и силы тока в цепи от времени показаны на рис. 146. Для оценки времени зарядки конденсатора можно принять, что заряд возрастает до максимального значения с постоянной скоростью, равной силе тока в начальный момент времени. В этом случае

Аналогичная оценка исчезновения тока, полученная на основании уравнения (3) приводит к этому же результату.

Строго говоря, время зарядки конденсатора, описываемой уравнением (2) равно бесконечности

Это парадокс можно исключить, если принять во внимание дискретность электрического заряда

Энергия устройства

Зарядить конденсатор мгновенно невозможно. Для этого процесса требуется определённое время. Это явление используется в радиотехнике. Так, с помощью конденсатора сглаживаются импульсные всплески. В первом приближении конденсатор похож на аккумулятор. Но при этом он отличается от него принципом накопления энергии, ёмкостью и скоростью заряда разряда. При подключении источника питания к выводам обкладок устройства конденсатор накапливает на них заряд.~

Заряд и разряд конденсатора

Работу устройства можно объяснить по аналогии с протеканием воды. Пусть имеется сосуд с жидкостью площадью поперечного сечения S. По сути, это эквивалент ёмкости. Тогда вода это будет заряд, а высота водяного столба — напряжение. Получается, что энергия — это произведение зарядов на высоту. Но если аккумулятор можно представить как сосуд, в котором имеется тонкий шланг (вывод) и по которому вытекает вода (заряд), то в конденсаторе его диаметр трубки будет равен размеру всей банки. То есть устройство может мгновенно отдать весь накопленный заряд.

При подаче напряжения на обкладки происходит электризация диэлектрика. В результате происходит смещение и на пластины передаётся энергия. На одной из них возникнет избыток электронов, и она условно зарядится отрицательно, а на второй недостаток — проводник станет положительным. Поэтому в формуле, определяющей заряд на обкладках конденсатора, большое значение имеет диэлектрическая проницаемость непроводящего ток вещества.

Между обкладками возникает сила. Величина действующей со стороны первой равняется F = ε1 * q, а со стороны второй F = ε2 * q. Таким образом, можно записать: F = ε1 * q = ε2 * q = E / 2 * q. При увеличении расстояние между обкладками от нулевого до d, будет выполняться работа: A = F * d. Она направлена на преодоление силы взаимодействия между заряженными проводниками.

То есть: A = E / 2 * q * d. Исходя из того, что ε = U/d будет верно записать: А = 1 / 2 q * U. Значит, механическая работа A в соответствии с законом сохранения энергии будет равна количеству зарядов, запасённых в электрическом поле конденсатора: Wэ = C * U2 / 2.

Следует отметить, что при подаче переменного сигнала внутри диэлектрика происходит постоянная смена знаков заряда. В итоге происходит нагревание, что приводит конденсатор к выходу из строя. Характеризуется это явление тангенсом угла диэлектрических потерь. Определяется он как отношение затраченной мощности к реактивной.

Изменение заряда конденсатора колебательного контура

При работе колебательного контура внутри него наблюдается колебание электронов. Изначально, для возникновения колебаний требуется первичный энергетический импульс. Сформировать его можно всего лишь на долю секунды соединив конденсатор с электрической батареей.

Заряд и разряд конденсатора

В этот момент конденсатор заряжается. Одна пластина насыщается избыточным количеством электронов, а на другой возникает их дефицит. Между этими разнозаряженными полюсами происходит формирование электрического поля, которое и является ёмкостью для запасания энергии, полученной от источника питания.

Как только конденсатор оказывается заряжен, избыточный объём электронов с одной пластины направляется в сторону другой, но перед этим проходит через катушку. В это мгновение внутри контура фиксируется наличие электрического тока.

Популярные статьи  Радиоуправление кран-балкой и мостовым краном - примущества, работа, нюансы дистанционного управления

Нужно отметить, что в момент колебаний не происходит прямого перехода электронов между обкладками конденсатора. Хотя ток и движется достаточно быстро (практически 300 000 км/с), перемещение электронов внутри проводников не превышает пары-тройки миллиметров в секунду. В ходе одного полупериода электроны способны преодолеть лишь небольшой промежуток пути.

Несмотря на то, что намотка катушки представляет собой проводку, изготовленную из металлической проволоки, она становится причиной сильного противодействия для потока электронов. Образуемое витками магнитное поле перенимает на себя часть той электроэнергии, которую конденсатор скопил в момент зарядки.

По этой причине, даже при полной разрядке конденсатора продолжается течение тока внутри контура. Направление движения не изменится, но продолжатся оно будет уже благодаря катушечной энергии.

Когда энергетические запасы катушки тоже иссякнут, исчезнет и её магнитное поле. В этот момент у конденсатора вновь появится заряд, полярность пластин поменяется (избыток электронов будет там, где прежде был дефицит). У вновь накопившего заряд конденсатора начнётся повторная разрядка. Ток снова будет проходить через катушку, но его направление сменится на противоположное.

Заряд и разряд конденсатора

Таким образом формируются электронные колебания, которые прекратятся только когда энергетические потери не превысят количество запасённой конденсатором энергии.

Энергия тока может теряться ввиду следующих причин:

Поверхностный эффект делает уровень активного сопротивления более высоким, чем уровень сопротивления постоянному току. Под поверхностным эффектом подразумевается явление при котором движение высокочастотного тока происходит не во всём проводе, а лишь вдоль тонкого поверхностного слоя. Это приводит к сокращению площади рабочего сечения. При более высоких частотах рабочий слой ещё больше истончается и сопротивление вновь растёт.

Нагревание твёрдого диэлектрика.

Диэлектрики находятся под действием переменного электрического поля, что приводит к интенсивному молекулярному колебанию и взаимному трению между молекулами.

Отсутствие идеальной изоляции.

К сожалению, даже самые хорошие диэлектрики не позволяют избежать возникновения токов утечки.

Нагревание ферромагнитного сердечника.

Ферромагнитные сердечники необходимы, чтобы увеличивать индуктивность катушек.

Возникновение вихревых токов.

На размещённые поблизости от колебательного контура предметы из металла влияет переменное магнитное поле, ввиду чего в них образуются вихревые токи, забирающие на себя часть энергии.

  • Излучаемые контуром электромагнитные волны.
  • Потери, связанные с подключением к другим цепям.

При возрастании частоты внутри колебательного контура увеличиваются все виды потерь. При суммировании энергетических потерь из приведённого перечня окажется, что они соответствуют потерям под влиянием активного сопротивления. Соответственно по активному сопротивлению можно судить об общих энергетических потерях.

Вопросы и задания для самоконтроля

Вопросы и задания для самоконтроля

  1. Что представляет собой конденсатор и от чего зависит его ёмкость?
  2. Выведите формулы ёмкости плоского, цилиндрического и сферического конденсаторов.
  3. Как изменяется разность потенциалов на обкладках конденсатора при его зарядке и разрядке?
  4. Какой ток называется квазистационарным?
  5. Выведите формулы электроёмкости батареи последовательно и параллельно соединённых конденсаторов
  6. Что такое время релаксации?
  7. Объясните принцип работы экспериментальной установки.
  8. Нарисуйте графики зависимости силы тока и напряжения от времени при зарядке и разрядке конденсатора.
  9. Соберите на мониторе такую цепь, состоящую из источника тока, двух ламп, выключателя и соединительных проводов, чтобы с выключением лампы в одной цепи загоралась лампа в другой.
  10. Определите заряд, который пройдёт через гальванометр в схеме, показанной на рис. 2, при замыкании ключа.
  11. Конденсатор ёмкости С = 300 пФ подключается через сопротивление R =500 Ом к источнику постоянного напряжения U0. Определите: а) время, по истечению которого напряжение на конденсаторе составит 0,99 U0; в) количество тепла, которое выделится на этом сопротивлении при разрядке конденсатора за это же время.
  12. Имеется ключ, соединительные провода и две электрические лампочки. Составьте на мониторе электрическую схему включения в сеть этих лампочек, которая должна удовлетворять следующему условию: при замкнутом ключе горит только первая лампочка, при размыкании ключа первая гаснет, а вторая загорается.
  13. Конденсатору ёмкостью С сообщают заряд q, после чего обкладки конденсатора замыкают через сопротивление R. Определите: а) закон изменения силы тока, текущего через сопротивление; б) заряд, прошедший через сопротивление за время t; в) количество тепла, выделившееся в сопротивлении за это время.
  14. Определите количество тепла, выделившегося в цепи (рис. 4-6) при переключении ключа К из положения 1 в положение 2. Параметры цепи обозначены на рисунках.

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора

устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную . Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

Активное и реактивное сопротивления

Хотя активное и реактивное сопротивления очень похожи. Даже значения обоих параметров измеряются в Омах, но они не совсем одинаковы. В результате этого невозможно сложить их вместе непосредственно. Вместо этого их нужно суммировать «векторно». Другими словами, необходимо округлить каждое значение, а затем сложить их вместе и выделить квадратный корень из этого числа:

Xtot2 = Xc2 + R2

В данной статье были подробно описаны основные компоненты, устройство и принцип работы конденсаторов, а также приведены базовые формулы, предназначенные для того, чтобы посчитать полезный объём прибора. Для более глубокого ознакомления необходимо внимательно рассмотреть типы данных деталей и их практические особенности в различных схемах и устройствах.

Разрядное устройство своими руками

Перед тем как измерить емкость, проверить кондёры на пробой или утечку, или если нужна замена несправного элемента необходимо его разрядить. Особенно актуально сделать правильный разряд у высоковольтных радиодеталей большой емкости. Накопленная энергия может сохраняться длительное время и неправильный демонтаж или хранение может нести угрозу для жизни.

Для безопасной разрядки высоковольтных конденсаторов можно собрать недорогое, простое в реализации электронное устройство. Оно разряжает вполне эффективно и безопасно.

Посмотрим на его принципиальную схему:

Заряд и разряд конденсатора

Напряжение с высоковольтного конденсатора поступает на гасящий резистор R1 и далее уходит на диодный ограничитель напряжения двустороннего типа.

Сам диодный ограничитель из двух параллельных цепочек диодов D1-D3 и D4-D6. Это сделано для того чтобы от любого диода в цепи снять напряжение порядка 2 вольт для работы светодиодных индикаторов D7, D8. Поступающий ток на светодиоды ограничивается резистором R2.

Светодиод запускает процесс разряда высоковольтного конденсатора до безопасного напряжения порядка двух вольт.

Заряд и разряд конденсатора

На процесс разряда может потребоваться некоторое время от 10 сек. и больше. Время разряда зависит от емкости подключенного кондёра и, какое остаточное напряжение в нем оставалось.

Как только светодиод потухнет можно провести окончательный разряд, с помощью отвертки закоротив выводы радиодетали.

Схема вполне работоспособна.

Всю плату можно собрать самостоятельно и поместить в пластиковый корпус.

Заряд и разряд конденсатора

Оцените статью
Adblock
detector