Анализ полученных результатов обследования
На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности
Но перед её покупкой было решено обратить внимание на гармоники
В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.
Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.
Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).
Отрицательный косинус
Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!
В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ < 0, что и должно быть, но конденсаторные установки используются неправильно, и возможны ситуации, когда напряжение в сети из-за этого может подняться.
Мероприятия по увеличению косинуса фи
Чтобы увеличить косинус фи, можно воспользоваться двумя способами:
- Естественным путем без установки компенсирующих приборов и устройств.
- Искусственным путем с установкой компенсирующих агрегатов.
В первом случае необходимо использовать мероприятия, с помощью которых регулируются технологические процессы. Таким методом добивается оптимальный режим расходования потребляемой электроэнергии. Ко вторым, к примеру, можно отнести замену асинхронных электродвигателей синхронными, в которых реактивная мощность практически равна нулю. Она присутствует, но только на стадии запуска мотора.
Источник
Коррекция коэффициента мощности
Он уменьшается посредством работы трансформаторов, систем освещения и двигателей асинхронного типа. Увеличить показать, то есть корректировать его к высокому углу, получается при помощи конденсаторов, двигателей асинхронного типа и генераторов. Поэтому они устанавливаются как дополнения в стандартную цепочку. Популярные методики коррекции:
- установка конденсатора — параметры реактивной уменьшаются, то по формуле приводит к увеличению значения;
- установка малой нагрузки — получить результат возможно при работе двигателей асинхронного типа;
- выбор безопасных условий работы — не допуск к работе, если показатели номинального напряжения повышены;
- своевременное проведение плановых отслуживающих работ — нагрузка определяет время работы, внимательно относиться стоит к оборудованию, которое постоянно работает при высоких показателях номинального напряжения.
Корректировка обязательна на производственных ресурсах, а также для оборудования, которое применяется в хозяйственных, индивидуальных целях. Методика позволяет эономить средства, особенно если речь идет о крупных производствах.
Косинус фи или “темная сторона” эффективности индукционных нагревателей
Эффективность индукционных электрических котлов в системах теплоснабжения непосредственно связана с понятием «косинуса фи». Для специалистов-энергетиков вопрос «что такое «косинус фи», конечно, вопросом не является, однако для всех остальных этот термин может показаться непонятным
В этой статье мы разберемся с этим понятием и поймем, почему «косинус фи» индуктивно-кондуктивных нагревателей «Терманик», равный 0,985, – это так важно с точки зрения оценки эффективности индукционных нагревателей. Причем, как обычно, не будем сыпать сложными определениями и формулами, ведь мы хотим разобраться и понять, а не написать курсовую работу!
cosφ — именно так обозначается это понятие – это отношение активной мощности к полной. cosφ не измеряется ни в Ваттах, ни в Герцах – ни в чем, потому как это коэффициент и является относительной величиной. Он может варьироваться от 0 до 1. И чем ближе к 1, тем лучше. Также этот коэффициент называется «коэффициентом мощности».
Откуда же он берется? Введем некоторые понятия. Любой прибор, имеющий в своем составе электрические элементы, создает электромагнитное поле, а для трансформатора или индукционного нагревателя, электромагнитное поле – это то, ради чего и создается прибор, так как если он не будет генерировать магнитное поле, он не будет работать, то есть станет бесполезной железякой. Возьмем, к примеру, индукционный электронагреватель «Терманик 100» с заявленной заводом-изготовителем мощностью 100 кВт. С точки зрения владельца «Терманика» — это нагреватель, который потребляет электроэнергию и производит тепло. А с точки зрения поставщика электроэнергии, «Терманик» — это нагрузка, то есть потребитель мощностью… 102 кВА. Что за разница в показаниях? И почему одна мощность измеряется в кВт, а другая – в кВА?
Дело в том, что в сети переменного тока различают активную, реактивную и полную мощность. Собственно говоря, полная мощность и состоит из двух составляющих – активной и реактивной мощности. Активная мощность – это та самая мощность, потребляя которую, электронагреватель и вырабатывает тепловую энергию, она-то и измеряется в кВт (и для нагревателя «Терманик 100» составляет 100 кВт). Но какая-то часть мощности тратится не на нагрев, а на поддержание работы самого нагревателя. В случае с индукционным нагревателем – на создание и поддержание магнитного поля, без которого он бы не работал вообще. Эта мощность и является «реактивной мощностью». Несмотря на свое название, к работе реактивного двигателя она не имеет никакого отношения. В данном случае, «реактивный» — значит направленный в противоположном от движения электротока направлении. Реактивная мощность измеряется в вольт-амперах реактивных (Вар, кВАр), а общая мощность измеряется в кВА.
Коэффициент мощности, он же cosφ — это отношение активной мощности к полной. Физически он показывает, какая часть полной мощности идет на совершение полезной работы (в нашем случае – на преобразование в тепло), а какая – на поддержание работоспособности самого устройства. Если наш нагреватель обладает коэффициентом мощности 0,985, значит 98,5% мощности идет на нагрев и только 1,5% преобразуется в реактивную мощность.
Так и получается, что 102 кВА х 0,985 = 100 кВт
Реактивная мощность сама по себе не совершает полезную работу, хотя, как ни парадоксально, является необходимой составляющей для ее осуществления. Реактивная мощность возвращается обратно в электросеть.
Реактивная мощность и энергия снижают показатели эффективности энергосистемы, то есть загрузка реактивными токами генераторов электростанций увеличивает расход топлива, растут потери в подводящих сетях и приемниках, увеличивается падение напряжения в сетях. Строго говоря, большая реактивная мощность – это скорее головная боль поставщика электроэнергии
Однако и для потребителя это важно, поскольку, чем меньше реактивной мощности выдает его оборудование, тем меньше нагрузка на понижающие силовые трансформаторы, меньше нагрузка на провода и возможность использования кабелей меньшего сечения, избежание штрафов за низкий cosφ (есть и такие!), ну и, в целом, снижение потребления электроэнергии
Значение коэффициента мощности выше 0,9 говорит о высокой эффективность индукционных нагревателей
Ни для кого не секрет, что индукционный нагреватель небольшой мощности можно собрать и «в гараже», возможно, его даже можно будет эксплуатировать, однако если говорить о промышленном предприятии, где совокупное значение вырабатываемой всеми приборами и устройствами реактивной мощности, чрезвычайно важно, там могут применяться только высокопроизводительные машины с максимальным коэффициентом мощности
Планирование потребности в производственных мощностях (CRP)
Использование данных систем преследует цель повысить эффективность работы оборудования, команд сотрудников, конвейерных линий. Суть состоит в планировании и нахождении баланса загруженности для реализации плана по выпуску конечного продукта. Планировать необходимые объемы мощностей нужно для каждого типа производимой продукции с учетом структуры технологического процесса. Система генерирует отчет о расхождениях между необходимой загрузкой и представленными в наличии мощностями.
Планирование потребности в производственных мощностях
Коэффициент использования мощности – важный параметр, помогающий определить, какими возможностями для повышения эффективности обладает предприятие, отдельная производственная линия или единица оборудования. Проведение расчетов с его использованием поможет оптимизировать производство, выявить, какие оборудование и технологические процессы нуждаются в модернизации или замене.
На что влияет низкий коэффициент мощности
К чему могут привести низкие показатели коэффициента мощности:
- При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8 I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
- Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
- Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).
Коэффициент мощности
Коэффициентом мощности, или “косинусом фи” (cos φ), цепи называется отношение активной мощности к полной мощности.
В общем случае активная мощность меньше полной мощности, то есть у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.
Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.
Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо.
Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии.
Из треугольника мощностей (смотрите рисунок 1, в статье “Треугольник мощностей”) получаем:
Cos φ, или коэффициент мощности, измеряется особым прибором фазометром.
Пример 1. Амперметр показывает ток 10 А, вольтметр – 120 В, ваттметр – 1 кВт. Определить cos φ потребителя.
S = I × U = 10 × 120 = 1200 ВА,
Пример 2. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 В, амперметр – 20 А и фазометр 0,8.
P = I × U × cos φ = 20 × 220 × 0,8 = 3520 Вт = 3,52 кВт.
Полная мощность.
S = I × U = 20 × 220 = 4400 ВА = 4,4 кВА.
Пример 3. Вольтметр, установленный на щитке электродвигателя показывает 120 В, амперметр – 450 А, ваттметр – 50 кВт. Определить z, r, xL, S, cos φ, Q.
Так как P = I2 × r, то
S = I × U = 450 × 120 = 54000 ВА = 54 кВА ,
Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти “косинус фи” цепи, как показано на рисунке 1. Этим можно воспользоваться для решения самых разнообразных задач.
Пример 4. Определить z, xL, U, Uа, UL, S, P, Q, если I = 6 А, r = 3 Ом, cos φ = 0,8 и ток отстает от по фазе от напряжения.
Из треугольника сопротивлений известно, что
отсюда
U = I × z = 6 × 3,75 = 22,5 В .
Uа = I × r = 6 × 3 =18 В .
UL = I × xL = 6 × 2,24 = 13,45 В .
S = I × U = 6 × 22,5 = 135 ВА .
P = I2 × r = 36 × 3 = 108 Вт
или
P = I × U × cos φ = 6 × 22,5 × 0,8 = 108 Вт .
Q = I × UL = 6 × 13,45 = 81 вар
или
или
Q = I2 × xL = 62 × 2,24 = 81 вар .
Далекий от электротехники, но весьма наглядный пример
Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.
Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.
Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).
PF или DPF?
Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.
Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.
Вот как обстоят иногда дела:
Формы напряжения и тока при нелинейной нагрузке
Гармоники напряжения, тока и мощности
Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.
Поэтому надо понимать, что та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.
И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.
Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.
Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)
В итоге можно сказать, что справедливо выражение:
cos φ = DPF ≤ PF
Минусы и плюсы наличия реактивной составляющей
При питании нагрузки, имеющей только активный характер, сдвиг фаз между током и напряжений равен нулю. Этот случай можно назвать идеальным, при нем можно питающие сети используются полностью, поскольку нет потерь на бесполезную реактивную составляющую.
В реальной жизни нагрузка, как правило, имеет индуктивный характер (ток отстает от напряжения), и является активно-реактивной. Поэтому всегда, когда говорят о сдвиге фаз и о косинусе, имеют ввиду индуктивную нагрузку.
Основными источниками реактивной составляющей электроэнергии являются трансформаторы и асинхронные электродвигатели.
Реактивная составляющая мощности питания является негативным фактором, поскольку:
- Возникают дополнительные потери в линиях передачи электроэнергии,
- Снижается пропускная способность линий электропередачи,
- Происходит падение напряжения на линиях передачи из-за увеличения реактивной составляющей тока питающей сети,
- Происходит дополнительный нагрев и износ систем распределения и трансформации электроэнергии,
- Возможно появление резонансных эффектов на частотах гармоник, что может вызвать перегрев питающих сетей.
По приведенным причинам необходимо понижать долю реактивной мощности в сети (повышать косинус) – это выгодно и энергоснабжающим организациям, и потребителям с распределенными сетями.
Как измерить коэффициент мощности
Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.
Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.
Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.
Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.
Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.
Однако это тема совсем другой статьи.
https://youtube.com/watch?v=-MBd7x6GmHU
Гармоники питающего напряжения
Кроме образования реактивной мощности, на промышленных предприятиях существует такой негативный фактор, как выработка гармоник напряжения питающей сети.
Гармоники – это та часть спектра питающего напряжения, которая отличается частоты промышленной сети 50 Гц. Как правило, гармоники образуются на частотах, кратных основной. Таким образом, 1-я (основная) гармоника имеет частоту 50 Гц, 2-я – 100, 3-я – 150, и так далее.
Для измерения гармоник напряжения существует формула:
Гармоники напряжения – формула расчета
где:
- Кu – коэффициент нелинейных искажений, или THD (Total Harmonic Distortion),
- U(1), U(2), и так далее – напряжение соответствующей гармоники, вплоть до 40-й.
Однако, эта формула не удобна на практике, поскольку не дает представления об уровне каждой гармонике в отдельности. Поэтому для практических целей используют формулу:
Коэффициент каждой гармоники напряжения
Где:
- Кu(n) – коэффициент n-й гармонической составляющей спектра напряжения,
- U(n) – напряжение n-й гармоники,
- U(1) – напряжение 1-й гармоники
Таким образом, при измерении мы получим детальное распределение гармоник в спектре питающего напряжения, что позволит провести детальный анализ полученной информации и сделать правильные выводы.
Есть ещё гармоники тока, но там всё гораздо хуже…
Косинус фи (cos φ) или Коэффициент мощности
На шильдиках двигателей и некоторых других устройств можно видеть непонятный параметр косинус фи (cos φ). Что этот параметр означает, в данной статье коротко объясняется, что это такое. Косинус фи (cos φ) часто называют «Коэффициент мощности». Это почти одно и то же при правильной синусоидальной форме тока. Иногда для обозначения коэффициента мощности используется λ, эту величину выражают в процентах, или PF.
Условные обозначения
P — активная мощность S — полная мощность Q — реактивная мощность, U — напряжение I — ток.
Что такое Косинус фи (cos φ) — «Коэффициент мощности»
Косинус фи (cos φ) это косинус угла между фазой напряжения и фазой тока. При активной нагрузке фаза напряжения совпадает с фазой тока, φ (между фазами) равен 0 (нулю). А как мы знаем cos0=1. То есть при активной нагрузке коэффициент мощности равен 1 или 100%.
Активная нагрузка
При емкостной или индуктивной нагрузке фаза тока не совпадает с фазой напряжения. Получается «сдвиг фаз». При индуктивной или активно-индуктивной нагрузке (с катушками: двигатели, дросселя, трансформаторы) фаза тока отстает от фазы напряжения. При емкостной нагрузке (конденсатор) фаза тока опережает фазу напряжения А почему тогда косинус фи (cos φ) это тоже самое что коэффициент мощности, да потому что S=U*I. Посмотрите на графики ниже. Здесь φ равно 90 косинус фи (cosφ)=0(нулю).
Индуктивная нагрузка
Попытаемся вычислить мощность для простоты возьмем максимальное значение напряжения равное 1(100%) в этот момент ток равен 0(нулю) соответственно их произведение, то есть мощность равны 0(нулю). И наоборот когда ток максимальный напряжение равно нулю. Получается что полезная, активная мощность равна 0(нулю).
Коэффициент мощности это соотношение полезной активной мощности к полной мощности, то есть cosφ=P/S.
Треугольник мощностей
Посмотрите на треугольник мощностей. Вспомним тригонометрию (это что то из математики) вот здесь то она нам и пригодится.
Q =U x I x sin φ
На практике. Если подключить асинхронный двигатель в сеть без нагрузки, в холостую. Напряжение вроде как есть, ток, если замерить тоже есть, при этом ни какой полезной работы не совершается. Соответственно активная мощность минимальна. Если на двигателе увеличить нагрузку то сдвиг фаз начнет уменьшаться и соответственно косинус фи (cos φ) будет увеличиваться, а с ним и активная мощность.
Типовые оценки качества электропотребления
При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.
Значение коэффициента мощности | Высокое | Хорошее | Удовлетворительное | Низкое | Неудовлетворительное |
---|---|---|---|---|---|
cosφ{\displaystyle \operatorname {cos} \varphi } | 0,95…1 | 0,8…0,95 | 0,65…0,8 | 0,5…0,65 | 0…0,5 |
λ{\displaystyle \lambda } | 95…100 % | 80…95 % | 65…80 % | 50…65 % | 0…50 % |
Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют (ЭмПРА), характеризующиеся низким его потреблением, то есть неэффективным электропотреблением. В отличие от них современные светильники, и в том числе компактные люминесцентные («энергосберегающие») лампы имеют ЭПРА, и характеризуются коэффициентом мощности стремящемся к 1, то есть к идеальному значению.
Несинусоидальность
Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях; уменьшение коэффициента мощности за счёт мощности искажения, вызванной протеканием токов высших гармоник; а также ограниченное применение батарей конденсаторов для компенсации реактивной мощности.
Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы и др.
Отрицательный косинус
Из школьного курса геометрии известно, что cos (φ) = cos (-φ), то есть косинус любого угла будет положительной величиной. Но как же отличить индуктивную нагрузку от емкостной? Всё просто – электрики всех стран условились, что при емкостной нагрузке перед знаком косинуса ставится минус!
В практике пользования прибором анализа напряжения HIOKI у меня были случаи, когда значение косинуса было отрицательным. В последствии выяснилось, что была неправильно включена компенсаторная установка и произошла перекомпенсация. То есть cos φ < 0, что и должно быть, но конденсаторные установки используются неправильно, и возможны ситуации, когда напряжение в сети из-за этого может подняться.
§ 75. Коэффициент мощности («косинус фи»)
Коэффициентом мощности, или «косинусом фи» (cos φ), цепи называется отношение активной мощности к полной мощности.
Коэффициент мощности = | активная мощность | |
полная мощность |
или
cos φ = P/S = P/UI = P/√(P2 + Q2).
В общем случае активная мощность меньше полной мощности, т. е. у этой дроби числитель меньше знаменателя, и поэтому коэффициент мощности меньше единицы.
Только в случае чисто активной нагрузки, когда вся мощность является активной, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.
Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице.
Величину cos φ можно косвенно определить по показаниям ваттметра, вольтметра и амперметра:
cos φ = P/UI.
Коэффициент мощности можно также измерить особым прибором — фазометром.
Пример 14. Амперметр показывает ток 10 а, вольтметр — 120 в, ваттметр — 1 квт. Определить cos φ потребителя:
S = IU = 10 ⋅ 120 = 1200 ва,
cos φ = P/S = 1000/1200 = 0,83.
Пример 15. Определить активную мощность, отдаваемую генератором однофазного переменного тока в сеть, если вольтметр на щите генератора показывает 220 в, амперметр — 20 а и фазометр — 0,8:
Р = IU cos φ = 20 ⋅ 220 ⋅ 0,8 = 3520 вт = 3,52 квт.
Полная мощность
S = IU = 20 ⋅ 220 = 4400 ва = 4,4 ква.
Пример 16. Вольтметр, установленный на щитке электродвигателя, показывает 120 в, амперметр — 450 а, ваттметр — 50 квт. Определить z, r, xL, S, cos φ, Q:
z = U/I = 120/450 = 0,267 ом.
Так как Р = I2 ⋅ r, то
r = Р/I2 = 50000/4502 = 0/247 ом;
xL = √(z2 — r2) = √(0,2672 — 0,2472) = √0,01 = 0,1 ом;
S = IU = 450 ⋅ 120 = 54000 ва = 54 ква;
cos φ = Р/S = 50000/54000 = 0,927;
Q = √(S2 — Р2) = √(540002 — 500002) = √416000000 = 20396 вар = 20,396 квар.
Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти «косинус фи» цепи, как показано на рис. 168. Этим можно воспользоваться для решения самых разнообразных задач.
Рис. 168. Определение коэффициента мощности из треугольников сопротивлений (а), напряжений (б) и мощностей (в)
Пример 17. Определить z, xL, U, Uа, UL, S, Р, Q, если I = 6 а, r = 3 ом, cos φ = 0,8 и ток отстает по фазе от напряжения.
Из треугольника сопротивлений известно, что
cos φ = r/z,
отсюда
z = r/cos φ = 3/0,8 = 3,75 ом;
U = I ⋅ z = 6 ⋅ 3,75 = 22,5 в;
xL = √(z2 — r2) = √(3,752 — 32) = √(14,06 — 9) = √5,06 = 2,24 ом;
Uа = Ir = 6 ⋅ 3 = 18 в;
UL = IxL = 6 ⋅ 2,24 = 13,45 в;
S = IU = 6 ⋅ 22,5 = 135 ва,
или
P = I2r = 36 ⋅ 3 = 108 вт;
Р = IU cos φ = 6 ⋅ 22,5 ⋅ 0,8 = 108 вт;
Q = IUL = 6 ⋅ 13,45 = 81 вар,
или
Q = √(S2 — P2) = √(1352 — 1082) = √6561 = 81 вар,
или
Q = I2xL = 62 ⋅ 2,24 = 81 вар.
Основными потребителями электрической энергии являются электрические двигатели, машины и электронагревательные устройства. Все они потребляют активную мощность, которую преобразуют в механическую работу и тепло. Электрические двигатели потребляют также реактивную мощность. Последняя, как известно, совершает колебательное движение от источника к двигателю и обратно.
У ламп и электрических печей сопротивления S = Р и cos φ = 1. У электрических двигателей S = √(P2 + Q2) и cos φ меньше 1.
При неизменной передаваемой активной мощности Р величина нагрузочного тока обратно пропорциональна значению cos φ:
I = P/U⋅cosφ
Это означает, что при тех же значениях активной мощности Р и напряжения U нагрузочный ток электрических двигателей больше, чем у электрических ламп. Если, например, коэффициент мощности электрического двигателя равен 0,5, то он потребляет в 2 раза больший ток, чем электрическая печь сопротивления той же мощности Р.
Потери мощности на нагрев проводов линии пропорциональны квадрату тока (ΔР = I2r).
Таким образом, при cos φ = 0,5 потери мощности в линии, по которой энергия передается потребителям, больше в 4 раза, чем при cos φ = 1. Кроме того, генераторы и трансформаторы будут загружены током в 2 раза больше и в этом случае требуется примерно в 2 раза большее сечение проводов для обмоток.
Отсюда видно, какое важное значение имеет величина cos φ в электроэнергетических установках. Для повышения коэффициента мощности промышленных установок, на которых преобладающая часть потребителей — электрические двигатели, параллельно им включают конденсаторы, т
е. добиваются резонанса токов, при котором cos φ близок к 1.
Мгновенная мощность
Этот показатель имеет непосредственное отношение к выделению энергии и к механической работе: то есть к тем явлениям, которые имеют инерционный характер. Применяется он исключительно для расчетов. В оценке расчетов различных показателей электрических сетей применяются также действующие значения силы тока и напряжения.
Измерительные приборы, знакомые со школьной скамьи — вольт- и амперметр — предназначены для измерения этих значений. Такой показатель, как полная мощность, по сути представляет собой произведение действующих силы тока и напряжения: достаточно их лишь перемножить.
Низкий коэффициент мощности: причины и последствия
Низкий показатель приводит к максимуму устранения энергетической составляющей. Используются специальные приборы для компенсации, которые позволяют снизить потребление электричества и увеличить кпд устройства.
Нагрузочные потери в элементах сети
Нагрузочные приводят к перераспределению и снижению энергетической составляющей. Уровень напряжения падает, что обуславливает значительный перегрев устройства. Следствие — потеря эффективности и работоспособности, быстрый выход оборудования из строя.
Потери в силовом трансформаторе
Коэффициент, обладающий разрозненными характеристиками, вызывает уход электроэнергии. Энергия неправильно распределяется. Увеличив рассматриваемый показатель удается достигнуть необходимых характеристик. В условиях значительной стоимости энергия в современных реалиях для предприятия снижение потерь становится первостепенной задачей. Дополнительно можно подключить нагрузку.
Далекий от электротехники, но весьма наглядный пример
Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.
Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.
Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).
Нужно ли компенсировать Q?
Потребители платят исключительно за активную энергию, т. е. за киловатт-часы, и это единственное, что могут измерить старомодные ротационные счетчики. Технически снижение реактивной составляющей немного снизит потери в кабелях между счетчиком коммунальных услуг и точкой соединения компенсатора мнимой мощности, но этот эффект пренебрежительно незначителен. По большому счету, улучшение коэффициента λ и снижение мнимого тока практически не влияет на показания счетчика. Теоретически ситуация изменится, если внутренние тарифы будут включать плату за киловольт-ампер-часы, измеренные современными счетчиками, однако это маловероятно. Конечно, электрическим компаниям выгодно снижать Q, но сначала нужно определить показатели домашней нагрузки, чтобы не принести больше вреда, чем пользы.
Смотреть галерею
PF или DPF?
Здесь надо сделать оговорку. Всё, что я говорил выше про косинус – относится к линейной нагрузке. Это означает, что напряжение и ток, хоть и гуляют по фазе, имеют форму синуса.
Но в реальном мире вся нагрузка не только не активная, но и не линейная. Значит, ток через неё имеет хоть и периодическую, но далеко не синусоидальную форму. Искаженная синусоида означает, что кроме первой гармоники имеются и другие, вплоть до бесконечности.
Вот как обстоят иногда дела:
Формы напряжения и тока при нелинейной нагрузке
Гармоники напряжения, тока и мощности
Обычно, когда нагрузка симметричная (трехфазные потребители), за счёт принципов работы все гармоники, кратные 2 и 3, почти отсутствуют. В итоге остаются в основном 5, 7, 11, 13 гармоники, имеющие частоты соответственно частоты 250, 350, 550, 650 Гц.
Поэтому надо понимать, что та теория, что я расписал выше – для идеальных условий (без нелинейных искажений), которых в реале не бывает. Либо, если пренебречь высшими гармониками тока, и взять только первую (50 Гц), что обычно и происходит в жизни.
И если подходить к терминологии строго, то cos φ и PF (Power Factor) – это не одно и то же. PF учитывает также все гармоники напряжения и тока. И с учетом нелинейности реальный PF будет меньше.
Для учета коэффициента мощности в приборе HIOKI есть параметр DPF (Displacement Power Factor, смещённый коэффициент мощности), который учитывает только первую гармонику и равен cos φ.
Коэффициенты мощности полный PF и смещённый DPF (для чистого синуса)
В итоге можно сказать, что справедливо выражение:
cos φ = DPF ≤ PF
Анализ полученных результатов обследования
На предприятии нужно было выбрать компенсирующую установку для увеличения коэффициента мощности
Но перед её покупкой было решено обратить внимание на гармоники
В ГОСТ 13109-97 указан допустимый уровень гармонических искажений по напряжению, равный 8%. По проведенным измерениям, этот уровень не превышен. Однако, при увеличении мощности в 5 раз можно ожидать увеличение процента гармоник (THD) в то же количество раз. Следовательно, возможно увеличение коэффициента гармоник с 2,3 % до 11,5 %.
Однако, по рекомендациям производителей для безопасной эксплуатации батарей конденсаторов установок стандартного исполнения уровень THD не должен превышать 2 %. При этом уровень гармоник тока не учитывается и ГОСТом не регламентируется.
Следовательно, необходимо применять совместно с конденсаторными установками фильтры высших частот (фильтрокомпенсирующие устройства).