АЧХ усилителя, охваченного ООС
ООС уменьшает частотные искажения, т.е. расширяет полосу пропускания Δf как в сторону низких (fH), так и в сторону высоких (fB) частот.
Рассмотрим пример, где цепь прямой передачи образует ОУ типа К140УД8, а цепь обратной связи резисторы R1 = 9 кОм, R2 = 1 кОм:
R1 и R2 — делитель напряжения, причем .
,
АЧХ ОУ К140УД8 и ОУ охваченного ООС с Β = 0,1 показаны на рисунке:
Частота среза fср ОУ без ООС равна 10 Гц.
Для определения частоты среза fср.ос усилителя, охваченного отрицательной обратной связью, в первом приближении достаточно провести горизонтальную линию на уровне || = 10 до пересечения с амплитудно-частотной характеристикой используемого операционного усилителя К140УД8. fср.ос = 5·105 Гц.
Применение в промышленности
Инструментальные усилители также находят применение в промышленной автоматизации, где многие системы используют электрический ток для пороговых измерений и удаленного управления системами. В начале двадцатого века промышленные комплексы использовали давление воздуха для удаленного управления машинами, используя 3-15 фунтов на квадратный дюйм в качестве полного диапазона, где давление 3 фунта на квадратный дюйм представляют 0%, система включена, а давление 15 фунтов на квадратный дюйм – 100%. Всё, что меньше 3 фунтов на квадратный дюйм, означало, что система отключена или нестабильна, и вызывало тревогу. Сейчас промышленным стандартом является использование постоянного тока, аналогичного давлению воздуха, с диапазоном от 4 до 20 мА. Между прочим, если вы когда-нибудь задумывались, что это за кнопка на многих наших мультиметрах с надписью «4-20 мА», теперь вы знаете. В этом применении ток измеряется так, чтобы два удаленно подключенных устройства могли обмениваться данными, даже если у них разные заземления. Чтобы это работало, выходной усилитель линии передачи должен работать очень линейно по отношению к входному сигналу и подавлять любые помехи, вызванные несовпадением потенциалов земель; идеальный кандидат для этого – инструментальный усилитель. Ниже представлена упрощенная схема измерительного усилителя, используемого в этом применении, – схема, известная как передатчик токовой петли.
Рисунок 5 – Передатчик токовй петли
На этом рисунке U1 представляет линию передачи с потерями, а R2 – устройство на приемной стороне, которое преобразует ток в некоторую команду или значение измерения.
В дополнение к этому применению в промышленности, контроллеры больших двигателей также включают в себя измерительные усилители. Обычно используемые для измерения тока в H-мосте, входы инструментального усилителя, не имеющие привязки к земле, идеально подходят для драйверов двигателей, поскольку двигатели обычно электрически не связаны с землей.
Интегрирующий усилитель на ОУ
Схема интегратора, в которой в цепи ООС установлен конденсатор, показана на рисунке:
Пусть на вход подается прямоугольный импульс Uвх. На интервале t1…t2 амплитуда Uвх равна U. Так как входной ток ОУ равен нулю, то |iвх| = |-ic|, iвх = Uвх/R1, ic = C · dUвых/dt.
Uвх/R1 = C · dUвых/dt или
где Uвых(0) – напряжение на выходе (конденсаторе С) к моменту начала интегрирования (к моменту t1).
τ = R1 · C – постоянная времени интегрирования, т.е. время, в течение которого Uвых изменится на величину ΔUвых = U.
Таким образом выходное напряжение на интервале t1…t2 изменяется по линейному закону и представляет интеграл от входного напряжения. Постоянная времени должна быть такой, чтобы до конца интегрирования Uвых < Eпит.
Типы схем
Схемы и компоненты можно разделить на две группы: аналоговые и цифровые. Конкретное устройство может состоять из схем, которые имеют один или другой или смесь двух типов. Важный электронный метод как в аналоговой, так и в цифровой электронике включает использование . Среди прочего, это позволяет создавать очень линейные усилители с высоким коэффициентом усиления и цифровые схемы, такие как регистры, компьютеры и генераторы.
Аналоговые схемы
Шасси преобразователя частоты Hitachi J100
Большинство аналоговых электронные приборы, такие как радио приемники, построены из комбинации нескольких видов основных схем. Аналоговые схемы используют непрерывный диапазон напряжения или тока в отличие от дискретных уровней, как в цифровых схемах.
К настоящему времени разработано огромное количество различных аналоговых схем, особенно потому, что «схему» можно определить как что угодно, от одного компонента до систем, содержащих тысячи компонентов.
Аналоговые схемы иногда называют линейными, хотя многие нелинейные эффекты используются в аналоговых схемах, таких как смесители, модуляторы и т. Д. Хорошими примерами аналоговых схем являются ламповые и транзисторные усилители, операционные усилители и генераторы.
Редко можно найти современные схемы, полностью аналоговые. В наши дни аналоговые схемы могут использовать цифровые или даже микропроцессорные технологии для повышения производительности. Этот тип схемы обычно называют «смешанным сигналом», а не аналоговым или цифровым.
Иногда бывает трудно различить аналоговые и цифровые схемы, поскольку они имеют элементы как линейной, так и нелинейной работы. Примером может служить компаратор, который принимает постоянный диапазон напряжения, но выводит только один из двух уровней, как в цифровой схеме. Точно так же транзисторный усилитель с перегрузкой может иметь характеристики управляемого переключателя, имеющего по существу два уровня выходного сигнала. Фактически, многие цифровые схемы фактически реализованы как вариации аналоговых схем, подобных этому примеру — в конце концов, все аспекты реального физического мира по сути аналоговые, поэтому цифровые эффекты реализуются только путем ограничения аналогового поведения.
Цифровые схемы
Цифровые схемы — это электрические схемы, основанные на нескольких дискретных уровнях напряжения. Цифровые схемы являются наиболее распространенным физическим представлением булевой алгебры и являются основой всех цифровых компьютеров. Для большинства инженеров термины «цифровая схема», «цифровая система» и «логика» взаимозаменяемы в контексте цифровых схем. В большинстве цифровых схем используется двоичная система с двумя уровнями напряжения, обозначенными «0» и «1». Часто логический «0» представляет собой более низкое напряжение и обозначается как «низкий», тогда как логическая «1» обозначается как «высокий». Однако в некоторых системах используется обратное определение («0» — «высокий») или текущие. Довольно часто разработчик логики может менять эти определения от одной схемы к другой, если он считает нужным облегчить свой дизайн. Определение уровней как «0» или «1» произвольно.
Изучена троичная (с тремя состояниями) логика и созданы несколько прототипов компьютеров.
Компьютеры , электронные часы и программируемые логические контроллеры (используемые для управления производственными процессами) состоят из цифровых схем. Другой пример — цифровые сигнальные процессоры .
Строительные блоки:
- Полевой транзистор металл-оксид-полупроводник (MOSFET)
- Логические ворота
- Сумматоры
- Шлепки
- Счетчики
- Регистры
- Мультиплексоры
- Триггеры Шмитта
Высокоинтегрированные устройства:
- Чип памяти
- Микропроцессоры
- Микроконтроллеры
- Специализированная интегральная схема (ASIC)
- Цифровой сигнальный процессор (DSP)
- Программируемая вентильная матрица (FPGA)
- Программируемые аналоговые массивы (FPAA)
- Система на кристалле (SOC)
Усилители на биполярных транзисторах
В промышленной электронике предпочтение часто отдают схемам на биполярных транзисторах, которые показаны на рисунке:
Сигнал источника eг с внутренним сопротивлением Rг через разделительный конденсатор С1 большой емкости поступает на вход усилительного каскада. Усилительный сигнал снимается с резистора RH через разделительный конденсатор С2 большой емкости. Питание каждой из схем осуществляется от источника ЭДС Е. Смещение рабочей точки на входной характеристике транзистора осуществляется при помощи делителя напряжения на резисторах R1 и R2.
Усилители работают в классе А. Rэ-Cэ — цепь эмиттерной стабилизации начального режима работы. С1 препятствует связи по постоянному току источника eг с усилителем, С2 препятствует связи выходной коллекторной цепи с RH по постоянному току, СЭ ликвидирует ООС на переменному токе. С1, С2, СЭ выбирают такими, чтобы в области средних частот переменные составляющие на них были пренебрежимо малы: XC1 = 1/ωc1 << rвх.э, XC2 = 1/ωc2 << RH, XСЭ ≈ 10·XC1.
Усилитель с общим эмиттером обладает:
- Коэффициентом усиления по напряжению до десятков единиц;
- Коэффициентом напряжения по току в несколько десятков единиц;
- Низким входным сопротивлением (от сотен Ом до десятков кОм).
Эммиттерный повторитель характеризуется:
- Стабильным коэффициентом усиления по напряжению, близким по величине к 1 (находится в пределах 0,9…0,9995);
- Большим входным сопротивлением;
- Низким выходным сопротивлением.
Электронные устройства и компоненты
Один из самых ранних радиоприемников Audion , сконструированный Де Форестом в 1914 году.
Техник-электронщик, проверяющий напряжение на плате силовой цепи в помещении аэронавигационного оборудования на борту авианосца USS Abraham Lincoln (CVN-72) .
Электронный компонент — это любой физический объект в электронной системе, используемый для воздействия на электроны или связанные с ними поля в соответствии с предполагаемой функцией электронной системы. Компоненты обычно предназначены для соединения друг с другом, обычно путем пайки на печатной плате (PCB), для создания электронной схемы с определенной функцией (например, усилителя , радиоприемника или генератора ). Компоненты могут быть упакованы по отдельности или в более сложных группах в виде интегральных схем . Некоторыми распространенными электронными компонентами являются конденсаторы , катушки индуктивности , резисторы , диоды , транзисторы и т. Д. Компоненты часто подразделяются на активные (например, транзисторы и тиристоры ) или пассивные (например, резисторы, диоды, катушки индуктивности и конденсаторы).
Передаточная характеристика ОУ
Операционный усилитель хорошо характеризует его передаточная характеристика – зависимость вида Uвых = f(Uдиф), где f – некоторая функция.
Характеристика обычно не проходит через начало координат. У различных экземпляров операционных усилителей одного и того же типа эта характеристика может проходить как слева, так и справа от начала координат. Заранее предсказать точное положение этой характеристики невозможно. Значение напряжения Uдиф, при котором выполняется условие Uвых= 0, называют напряжением смещения (напряжением смещения нуля) и обозначают через Uсм. Например, у ОУ типа К140УД1 Uсм = ±10 мВ
Для того, чтобы при нулевом усиливаемом сигнале напряжение на выходе было равно нулю, т.е. для того передаточная характеристика через начало координат, предусматривают меры по компенсации напряжения смещения (балансировка, коррекция нуля, настройка нуля). Для этого могут быть предусмотрены выводы «NC», на которые нужно подавать напряжение, компенсирующие Uсм, что показано на рисунке:
Напряжение Uсм зависит от различных факторов и может изменяться следующим образом:
- На единицы-десятки микровольт при изменении температуры на 1°С;
- На единицы-десятки микровольт при изменении напряжения питания на 1В;
- На доли-единицы микровольт при увеличении срока службы схемы на 1 месяц.
Диапазон выходного напряжения, соответствующий почти вертикальному участку передаточной характеристики, называется областью усиления. Соответствующий этому диапазону режим работы называют режим усиления (линейным, активным режимом).
В линейном режиме Uвых = k·Uдиф, где k – коэффициент усиления по напряжению (коэффициент усиления напряжения, коэффициент усиления дифференциального сигнала), k = 104…105.
В режиме насыщения Uвых.max = +Uпит– 3В, Uвых.min = -Uпит+ 3В.
В приближенных расчетах принимают: Uвых.max = +Uпит, Uвых.min = -Uпит.
Диапазон значений напряжений Uдиф настолько мал, что в режиме линейного усиления при практических расчетах принимают Uдиф = 0.
Усилители мощности. Линейные схемы на ОУ.
ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:
Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх > ∞, i+ = i- = 0).
Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (Rвых = 0).
Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения
Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
Синфазный сигнал не действует на операционный усилитель.
Напряжение смещения нуля равно нулю.
Усилители
При измерении электрических величин, контроле и автоматизации технологических процессов возникает необходимость усиления электрических сигналов. Для этой цели служат усилители, т.е. устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности от источника питания в нагрузку. Усилители выполняются на биполярных и полевых транзисторах или на интегральных схемах.
Простейшая ячейка, позволяющая осуществить усиление, называется каскадом. Структурная схема усилительного каскада показана на рисунке:
Усилительный каскад имеет входную цепь, к которой подводится входное напряжение Uвх (усиливаемый сигнал), и выходную цепь для получения выходного напряжения Uвых (усиленный сигнал). Усиленный сигнал имеет значительно большую мощность по сравнению с входным сигналом. Увеличение мощности сигнала происходит за счет источника электрической энергии Е. УЭ — управляющий элемент, выполненный на биполярном или полевом транзисторе.
К основным характеристикам усилителя относятся:
Способы упаковки
На протяжении многих лет использовалось множество различных методов соединения компонентов. Например, ранняя электроника часто использовала двухточечную проводку с компонентами, прикрепленными к деревянным макетам для построения схем. Другими методами использовались и проволочная обмотка . В большинстве современной электроники сейчас используются печатные платы, изготовленные из таких материалов, как FR4 или более дешевая (и менее износостойкая) бумага со склеенной синтетической смолой ( SRBP , также известная как Paxoline / Paxolin (торговые марки) и FR2), характеризующаяся коричневый цвет
Проблемы здоровья и окружающей среды, связанные со сборкой электроники, привлекли повышенное внимание в последние годы, особенно в отношении продуктов, предназначенных для Европы.
Инвертирующий усилитель на ОУ
Схема инвертирующего усилителя, охваченного параллельной ООС по напряжению показана на рисунках:
ООС реализуется за счет соединения выхода усилителя со входом резистором R2.
На инвертирующем входе ОУ происходит суммирование токов. Поскольку входной ток ОУ i- = 0, то i1 = i2. Так как i1 = Uвх/R1, а i2 = -Uвых/R2, то . Ku = = -R2/R1. Знак «-» говорит о том, что происходит инверсия знака входного напряжения.
На рисунке (б) в цепь неинвертирующего входа включен резистор R3 для уменьшения влияния входных токов ОУ, сопротивление которого определяется из выражения:
Входное сопротивление усилителя на низких частотах приблизительно равно Rвх.ос = ≈ R1
Выходное сопротивление Rвых.ос = существенно меньше Rвых собственно ОУ.
Что такое усилитель?
В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона
слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник
Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:
Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.
Амплитудно-частотная характеристика
Это зависимость от частоты модуля коэффициента усиления. В зависимости от вида АЧХ усилителя подразделяются на усилители постоянного тока (УПТ), усилители звуковой частоты (УЗЧ), избирательные усилители.
Вид АЧХ этих усилителей показан на рисунке:
– коэффициент частотных искажений (где Kf коэффициент усиления на заданной частоте).
Δf – полоса пропускания усилителя. Для УПТ (а) она начинается с частоты сигнала f = 0. УПТ усиливает как постоянный, так и переменный сигнал.
В УЗЧ (б) постоянный сигнал не усиливается. Сигналы низкой частоты усиливаются, начиная с нижней границы частоты fH до верхней границы частоты fB.
Характеристикой вида (в) обладают резонансные и частотно-избирательные усилители.
Обобщенная схема усилителя
Она выглядит примерно вот так:
Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .
Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).
В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .
Избирательные усилители
Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:
Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f коэффициент передачи фильтра стремится единице и Uвых = Uвх. Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.
Обратная связь в усилителях
Усилитель, у которого часть энергии выходного сигнала подается на вход, называется усилителем с обратной связью. Структурная схема усилителя с обратной связью показана на рисунке:
На вход усилителя с коэффициентом усиления К подается сигнал y. Он равен сумме входного сигнала xвх и сигнала z, поступающего по цепи обратной связи z = Β · xвых. Здесь Β — коэффициент обратной связи. Сигнал на выходе усилителя xвых будет равен y · K, или: xвых = (xвх + Β · xвых) · К. Связь между входным и выходным сигналами в таком усилителе равна
Коэффициент усиления усилителя с обратной связью равен
В рассмотренном случае y = хвх + z, т.е. на входе сигналы суммируются. Такая обратная связь называется положительной. Положительная обратная связь в усилителях не используется.
В усилителях используется отрицательная обратная связь (ООС), при которой y = хвх — z.
Коэффициент усиления усилителя с ООС равен
где К – коэффициент прямой передачи, или коэффициент усиления без обратной связи, Β – коэффициент передачи цепи обратной связи, 1 + Β·k – глубина обратной связи, Β·k – петлевое усиление.
При Β·k >> 1, Koc ≈ 1/Β, т.е. при глубоком ООС зависит только от свойств цепи обратной связи.
В общем случае K и Β имеют комплексный характер . Для упрощения удобно считать частотно независимыми, т.е. действительными величинами K и Β.
Что такое черный ящик в электронике
В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.
То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.
Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).
Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.
Выходная мощность усилителя
Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:
где
Pвых – выходная мощность усилителя, Вт
Iвых – сила тока в цепи нагрузки, А
UВых – напряжение на нагрузке, В
Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:
где
Pвых – выходная мощность усилителя, Вт
Iвых – сила тока в цепи нагрузки, А
Uвых – напряжение на нагрузке, В
cosφ – где φ – это разность фаз между осциллограммой тока и напряжения
Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид
Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.
Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.
Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:
В УН KU > 1, KI = 1; в УТ KI > 1, KU = 1; в УМ KU > 1 и KI > 1.
Классификация обратных связей в усилителях
Обратные связи бывают полезными, если мы их создаем сами, и паразитными (вредными), если они возникают в схемах помимо нашего желания.
По месту нахождения по отношению к усилителю ОС могут быть внутренними, если передача сигнала с выхода на вход происходит через внутренние элементы усилителя, и внешними, если они охватывают усилитель снаружи.
По воздействию на величину коэффициента усиления ОС бывают положительными, если увеличивают его, и отрицательными, если уменьшают.
Реализация полезных обратных связей может быть различной. Различают 4 вида обратных связей:
На рисунках изображены: а) последовательная ОС по напряжению б) параллельная ОС по напряжению в) последовательная ОС по току г) параллельная ОС по току
Для определения вида обратной связи (ОС) нужно «закоротить» нагрузки. Если при этом сигнал обратной связи обращается в нуль, то это ОС по напряжению, если сигнал ОС не обращается в нуль, то это ОС по току. При обратной связи по напряжению сигнал обратной связи, поступающий с выхода усилителя на вход, пропорционален выходному напряжению. При обратной связи по току сигнал обратной связи пропорционален выходному току. При последовательной обратной связи (со сложением напряжений) в качестве сигнала обратной связи используется напряжение, которое вычитается (для отрицательной обратной связи) из напряжения внешнего входного сигнала. При параллельной обратной связи (со сложением токов) в качестве сигнала обратной связи используется ток, который вычитается из тока внешнего входного сигнала.
Виды усилителей по полосе пропускания
По ширине полосы пропускания усилители делятся на:
Усилители низкой частоты
Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц – это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.
Широкополосные усилители
Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.
Узкополосные усилители
Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.
Усилители постоянного тока
Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).
Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.
Синфазный сигнал
ОУ конструируют так, чтобы они как можно больше изменяли Uвых при изменении Uдиф и как можно меньше изменяли Uвых при одинаковом (синфазном) изменении Uвх1 и Uвх2.
На рисунках: а) действует только синфазный сигнал Uсф = Uвх1 = Uвх2, при этом Uдиф = 0; б) график зависимости Uвых от Uсф.
Если модуль |Uсф| сравнительно мал, то синфазный сигнал слабо влияет на напряжение Uвых. Иначе его влияние, как следует из графика, может быть очень существенным. Если синфазный сигнал оказывается чрезмерно большим по модулю, то операционный усилитель может выйти из строя. Влияние синфазного сигнала при его малых по модулю значениях характеризуют коэффициентом усиления синфазного сигнала Kсф и коэффициентом ослабления синфазного сигнала Kос.сф
Коэффициент К всегда положителен. Коэффициенты Kсф и Kос.сф могут быть как положительными, так и отрицательными. Но в справочных данных обычно указывают модули этих коэффициентов. Модуль коэффициента Kсф обычно близок к единице, поэтому модуль коэффициента Kос.сф обычно такого же порядка, что и коэффициент K, т.е. 104…105.
Активные фильтры
В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.
Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.
В информационной электронике обычно используются активные фильтры. Термин «активный» объясняется включением в схему RLC — фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.
Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.
По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.
Схема простейшего ФНЧ и его АЧХ приведены на рисунке:
В полосе пропускания 0 — fc полезный сигнал проходит через ФНЧ без искажений.
fс – fз – переходная полоса, fз — ∞ – полоса задерживания, fс – частота среза, fз – частота задерживания.
ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.
Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.
Схема фильтра получила название моста Вина. На частоте f =
Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C
Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.
Схема фильтра называется несимметричным двойным Т-образным мостом.
, где R1 = R2 = R3 = R, C1 = C2 = C3 = C.
В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.
ОУ работает в линейном режиме. При расчёте задаются fс. Коэффициент усиления в полосе пропускания должен удовлетворять условию: К ≤ 3.
Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc, где fс – в Гц, С – в мкФ,
Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.
Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.
Классы работы транзистора в усилителе
Примем, что на вход усилителя подается синусоидальный сигнал.
Различают классы А, АВ, В, С и D в зависимости от положения начальной рабочей точки (статического режима) и величины входного напряжения. Основными характеристиками этих режимов являются нелинейные искажения и КПД. Работа усилителя в соответствующем режиме поясняется с помощью придаточной характеристики на рисунке:
Uвых.А – действует в течение всего периода Uвх.А. Uвых.В – действует в течение половины периода Uвх.В. Uвых.С – действует в течение интервала, меньшего половины периода Uвх.С.
Класс А подразумевает работу на линейной части характеристики с малым сигналом Uвх и сравнительно большой постоянной составляющей Uвх.п. Нелинейные искажения минимальны. Однако КПД резко превышает 0,35. Применяются в высококачественных линейных усилителях.
Класс В характеризуется работой с большим сигналом Uвх. Захватывается нелинейный участок передаточной характеристики. Форма выходного напряжения искажается (полусинусоида). Однако КПД достигает 80%. Применяется в 2-х тактных усилителях мощности.
Класс С характеризуется тем, что входное напряжение больше, чем в классе В. Выходное напряжение действует в течение времени меньшего, чем половина периода. Режим сопровождается большими искажениями усиливаемого напряжения, но КПД приближается к единице. Применяется в избирательных усилителях и автогенераторах.
Класс АВ является промежуточным между А и В.
Класс D — ключевой (транзистор находится или в насыщении, или в отсечке).
История электронных компонентов
Вакуумные лампы (термоэмиссионные клапаны) были одними из первых электронных компонентов. Они почти единолично ответственны за революцию в электронике первой половины двадцатого века. Они позволили использовать гораздо более сложные системы и дали нам радио, телевидение, фонографы, радары, междугороднюю телефонную связь и многое другое. Они играли ведущую роль в области микроволнового излучения и передачи высокой мощности, а также телевизионных приемников до середины 1980-х годов. С тех пор твердотельные устройства почти полностью взяли верх. Вакуумные лампы до сих пор используются в некоторых специализированных приложениях, таких как мощные радиочастотные усилители , электронно-лучевые трубки , специальное звуковое оборудование, гитарные усилители и некоторые микроволновые устройства .
Первый рабочий точечно-контактный транзистор был изобретен Джоном Бардином и Уолтером Хаузером Браттейном в Bell Labs в 1947 году. В апреле 1955 года IBM 608 был первым продуктом IBM, в котором использовались транзисторные схемы без каких-либо электронных ламп, и считается, что это первый продукт. -транзисторный вычислитель, который будет производиться для коммерческого рынка. 608-й содержал более 3000 германиевых транзисторов. Томас Дж. Уотсон-младший приказал, чтобы во всех будущих продуктах IBM использовались транзисторы. С того времени транзисторы использовались почти исключительно для компьютерной логики и периферийных устройств. Однако первые переходные транзисторы были относительно громоздкими устройствами, которые было трудно производить в серийном производстве , что ограничивало их ряд специализированных приложений.
МОП — транзистор (МОП — транзистор) был изобретен Mohamed Atalla и Давоном Кангом в Bell Labs в 1959 году МОП — транзистор был первым по- настоящему компактный транзистором , который может быть уменьшен и массовым производством для широкого круга применений. Его преимущества включают высокую масштабируемость , доступность, низкое энергопотребление и высокую плотность . Он произвел революцию в электронной промышленности , став самым широко используемым электронным устройством в мире. МОП-транзистор является основным элементом большинства современного электронного оборудования и сыграл центральную роль в революции электроники, революции микроэлектроники и цифровой революции . Таким образом, полевой МОП-транзистор считается рождением современной электроники и, возможно, самым важным изобретением в электронике.
Применение в измерениях
Одно из применений этих схем – измерение сигналов датчиков и преобразователей. Инструментальные усилители превосходно извлекают очень слабые сигналы из шумной среды; поэтому они часто используются в схемах, в которых используются датчики, измеряющие физические параметры. Для измерения давления тензодатчики часто используются с инструментальными усилителями, поскольку тензодатчики обычно «висят в воздухе», то есть они не имеют прямого соединения с землей. А инструментальный усилитель может усиливать сигналы без привязки к земле, потому что он усиливает только разницу между двумя входами. Тензодатчики часто используются в схеме моста Уитстона, который является очень распространенным примером формирования дифференциального сигнала без привязки к земле; данная схема изображена ниже, где R2 – изменяющийся элемент, создающий дифференциальное напряжение между узлами C и B.
Рисунок 3 – Мост Уитстона
Со схемой инструментального усилителя можно работать практически с любым датчиком; термопары, фотодиоды, термисторы, даже обычный кремниевый диод можно использовать в качестве простого датчика температуры, поместив его в схему моста, создающую входной сигнал для инструментального усилителя. Когда диод нагревается, прямое напряжение падает, создавая дифференциальный сигнал, который можно усилить. Причина, по которой схема моста так важна для датчиков и приборов, – это синфазный шум; схема с обычным операционным усилителем и датчиком на его входах будет работать как усилитель, но будет очень шумной. По этой причине инструментальные усилители так часто используются перед входами АЦП. Любой PIC-контроллер или Arduino имеет входы, которые можно настроить как аналоговые входы, но это несимметричные входы, которые не могут ослаблять синфазные сигналы. Инструментальный усилитель может извлекать и усиливать слабые сигналы датчиков из зашумленной среды и подавать чистый несимметричный выходной сигнал на АЦП
Это важно при работе с микроконтроллерами, так как любой дополнительный шум вызовет неустойчивое преобразование в дополнение к потере ценных битов АЦП