Электроемкость плоского конденсатора. Формулы
Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:
C=∑i=1NCi.
При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:
Пример 1
Произвести вычисление емкости плоского конденсатора при известной площади обкладок1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.
Решение
Чтобы рассчитать электроемкость конденсатора, применяется формула:
C=εεSd.
Значения:
ε=1, ε=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.
Подставим числовые выражения и вычислим:
C=8,85·10-12·10-410-3=8,85·10-13 (Ф).
Ответ: C≈,9 пФ.
Пример 2
Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения — 103 В.
Решение
Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:
E=14πεεqr2, где q обозначают заряд внутренней сферы, r=R1+x — расстояние от центра сферы.
Нахождение заряда предполагает применение определения емкости конденсатора С:
q=CU.
Для сферического конденсатора предусмотрена формула вида
C=4πεεR1R2R2-R1 с радиусами обкладок R1 и R2.
Производим подстановку выражений для получения искомой напряженности:
E=14πεεU(x+R1)24πεεR1R2R2-R1=U(x+R1)2R1R2R2-R1.
Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:
E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.
Ответ: E=3,45·104 Вм.
Всё ещё сложно?
Наши эксперты помогут разобраться
Все услуги
Решение задач
от 1 дня / от 150 р.
Курсовая работа
от 5 дней / от 1800 р.
Реферат
от 1 дня / от 700 р.
Калькулятор расчета запасаемой энергии в конденсаторе
Конструктивно конденсатор представляет собой емкостной элемент, состоящий из двух параллельно расположенных пластин, пространство между которыми заполнено диэлектриком.
Устройство конденсатора
Принцип работы конденсатора заключается в способности накапливать определенную величину заряда на пластинах и отдавать их обратно в сеть при прохождении через него переменного тока. Для цепи постоянного тока конденсатор представляет собой разрыв, но пластины все равно способны накапливать заряд. Основным параметром конденсатора является емкость, выражающаяся в Фарадах и способность накапливать заряд, выражаемая величиной энергии в Джоулях.
Если емкость конденсатора указывается на корпусе элемента и является его паспортным значением, то количество запасаемой энергии можно определить путем вычислений. Наиболее простым способом вычисления является использования онлайн калькулятора.
Для этого выполните такую последовательность действий:
- Внесите в первую графу калькулятора значение напряжения на конденсаторе в Вольтах;
- Укажите во втором поле величину емкости элемента в микрофарадах;
- Внесите значения сопротивления конденсатора и нажмите кнопку «Рассчитать».
В результате онлайн калькулятор расчета запасаемой энергии в конденсаторе выдаст значение заряда и времени, расходуемого на полный заряд емкостного элемента, подключенного к цепи.
Расчет величины заряда, накапливаемого в конденсаторе, и времени, необходимого для накопления этого заряда производится по таким формулам:
- W – это количество запасаемой энергии в конденсаторе;
- U – величина напряжения, приложенного к конденсатору;
- C – емкость конденсатора.
Для определения времени, затрачиваемого на накопление этого количества запасаемой энергии, в калькуляторе используется формула: Tзар = R*C
- Tзар — период времени, необходимый для накопления заряда, зависящий от параметров элемента;
- R – величина омического сопротивления конденсатора;
- C – емкость конденсатора.
Источник
Задачи на конденсаторы и электроемкость с решением
Если вы не знаете, как решать задачи с конденсаторами, сначала посмотрите теорию и вспомните про памятку по решению задач по физике и полезные формулы.
Задача №1 на электроемкость батареи конденсаторов
Условие
Плоский конденсатор емкостью 16 мкФ разрезают на 4 равные части вдоль плоскостей, перпендикулярных обкладкам. Полученные конденсаторы соединяют последовательно. Чему равна емкость батaреи конденсаторов?
Решение
Из условия следует, что площадь получившихся конденсаторов в 4 раза меньше, чем у исходного. Зная это, можно найти емкость каждого полученного конденсатора:
Соединяя 4 таких конденсатора последовательно, получаем:
Ответ: 1 мкФ.
Задача №2 на энергию плоского конденсатора
Условие
Плоский конденсатор заполнили диэлектриком с диэлектрической проницаемостью, равной 2. Энергия конденсатора без диэлектрика равна 20 мкДж. Чему равна энергия конденсатора после заполнения диэлектриком? Считать, что источник питания отключен от конденсатора.
Решение
Энергия конденсатора до заполнения диэлектриком равна:
После заполнения емкость конденсатора изменится:
Энергия конденсатора после заполнения:
Ответ: 40 мкФ.
Задача №3 на последовательное и параллельное соединение конденсаторов
Условие
На рисунке изображена батарея конденсаторов. Каждый конденсатор имеет емкость 1 мкФ. Найдите емкость батареи.
Решение
Как видим, часть конденсаторов соединена параллельно, а часть последовательно. Это типичный пример смешанного соединения конденсаторов. Алгоритм решения задач при смешанном соединении конденсаторов сводится к тому, чтобы упростить схему и свести все только к параллельному или последовательному соединению.
Конденсаторы 3 и 4 соединены параллельно. Складывая их емкость, получаем в итоге последовательное соединение четырех конденсаторов: 1, 2, 5 и 3-4. Для параллельного соединения:
Для последовательного соединения:
Ответ: 0,285 мкФ.
Задача №4 на пролет частицы в конденсаторе
Заряд конденсатора равен 0,3 нКл, а емкость – 10 пФ. Какую скорость приобретет электрон, пролетая в конденсаторе от одной пластины к другой. Начальная скорость электрона равна нулю.
Решение
По закону сохранения энергии, разность кинетических энергий электрона в начале и в конце пути будет равна работе поля по его перемещению. По условию, начальная кинетическая энергия электрона равна 0. Запишем:
С учетом этого, получим:
Ответ: 10^7 м/с.
Задача №5 на вычисление энергии электрического поля конденсатора
Условие
Конденсатор подключен к источнику постоянного напряжения U=1 кВ. Емкость конденсатора равна 5 пФ. Как изменяться заряд на обкладках конденсатора и его энергия, если расстояние между обкладками уменьшить в три раза.
Решение
Заряд конденсатора равен:
Изменение заряда будет равно:
Изменение энергии:
Ответ: 5 мкДж.
Последовательно соединение конденсаторов
Последовательное соединение конденсаторов используют, если необходимо получить емкость меньшую емкости элемента. Такие элементы выдерживают более высокие напряжения. При последовательном соединении конденсаторов, обратная величина общей емкости равняется сумме обратных величин отдельных элементов. Для получения требуемой величины нужны определенные конденсаторы, последовательное соединение которых даст необходимую величину.
ИССЛЕДОВАНИЕ ПОСЛЕДОВАТЕЛЬНОГО, ПАРАЛЛЕЛЬНОГО И СМЕШАННОГО СОЕДИНЕНИЯ КОНДЕНСАТОРОВ
Цель работы:Научиться составлять батареи конденсаторов и определять их емкость.
Теоретическая часть
Соединение конденсаторов параллельно
При параллельной схеме подключения все обкладки конденсаторов соединяются в две группы, причем один вывод с каждого конденсатора соединяется в одну группу с другими, а второй — в другую. Наглядный пример параллельного соединения и схема
на картинке
Все параллельно соединенные конденсаторы подключаются к одному источнику напряжения, поэтому существует на них две точки разности потенциалов или напряжения. На всех выводах конденсаторов будет абсолютно одинаковое напряжение.
При подключении параллельно все конденсаторы вместе, образуют принципиально одну емкость, величина которой будет равняться сумме всех емкостей подключенных в цепи конденсаторов. При параллельном подключении через каждый из конденсаторов потечет разный ток, который будет зависеть от величины емкости каждого из них. Чем выше емкость, тем больший ток потечет через неё.
Параллельное соединение очень часто встречается в жизни. С его помощью можно из группы конденсаторов собрать любую необходимую емкость. Например, для запуска 3 фазного электродвигателя в однофазной сети 220 Вольт в результате расчетов Вы получили что необходима рабочая емкость 125 мкФ. Такой емкости конденсаторов Вы не найдете в продаже. Для того, что бы получить необходимую емкость придется купить и соединить параллельно 3 конденсатора один на 100 мкФ, второй- на 20, и третий на 5 мкФ.
Соединение конденсаторов последовательно
При последовательном соединении конденсаторов каждая из обкладок соединяется только в одной точке с одной обкладкой другого конденсатора. Получается цепочка конденсаторов. Крайние два вывода подключаются к источнику тока, в результате чего происходит перераспределение между ними электрических зарядов. Заряды на всех промежуточных обкладках одинаковые величине с чередованием по знаку.
Через все соединенные конденсаторы последовательно протекает одинаковой величины ток, потому что у него нет другого пути прохождения.Общая же емкость будет ограничиваться площадью обкладок самого маленького по величине, потому что как только зарядится полностью конденсатор с самой маленькой емкостью- вся цепочка перестанет пропускать ток и заряд остальных прервется. Высчитывается же ем
кость по этой формуле:
Но при последовательном соединении увеличивается расстояние (или изоляция) между обкладками до величины равной сумме расстояний между обкладками всех последовательно подключенных конденсаторов. Например, если взять два конденсатора с рабочим напряжением 200 Вольт и соединить последовательно, то изоляция между их обкладками сможет выдержать 1000 Вольт при подключении в схему.
Из выше сказанного можно сделать вывод, что последовательно соединять необходимо:
1. Для получения эквивалентного меньшего по емкости конденсатора.
2. Если необходима емкость, работающая на более высоких напряжениях.
3. Для создания емкостного делителя напряжения, который позволяет получить меньшей величины напряжение из более высокого.
Практически, для получения первого и второго достаточно просто купить один конденсатор с необходимой величиной емкости или рабочим напряжением. Поэтому данный метод соединения в жизни не встречается.
Электроемкость
Энергетический потенциал дает возможность применять (большая электроемкость) конденсаторы. Энергия заряженного конденсатора используется при необходимости применить кратковременный импульс тока.
От каких величин зависит электроемкость? Процесс зарядки конденсатора начинается с подключения его обкладок к полюсам источника тока. Накапливаемый на одной обкладке заряд (величина которого q) принимается за заряд конденсатора. Электрическое поле, сосредоточенное между обкладками, имеет разность потенциалов U.
Электроемкость (С) зависит от количества электричества, сосредоточенного на одном проводнике, и напряжения поля: С= q/U.
Измеряется эта величина в Ф (фарадах).
Емкость всей Земли не идет в сравнение с емкостью конденсатора, величина которого примерно с тетрадь. Накапливаемый мощный заряд может быть использован в технике.
Формула энергии конденсатора
С емкостью самым тесным образом связана другая величина, известная как энергия заряженного конденсатора. После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.
В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.
Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.
Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде: W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: Wэл = CU 2 /2.
Гармонический закон колебаний в контуре
Напомним, что колебания называются гармоническими
, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».
Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.
Сначала мы выбираем положительное направление обхода
контура. Выбор роли не играет; пусть это будет направлениепротив часовой стрелки (рис. 10).
Рис. 10. Положительное направление обхода
Сила тока считается положительной , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .
Заряд конденсатора — это заряд той его пластины, на которую
течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — зарядлевой пластины конденсатора.
При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если , то заряд левой пластины возрастает, и потому .
Величины и меняются со временем, но энергия контура остаётся неизменной:
(8)
Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8); не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):
Подставляя сюда и , получим:
Но сила тока не является функцией, тождественно равной нулю; поэтому
Перепишем это в виде:
(9)
Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:
(10)
Эта величина называется ещё собственной частотой
контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят,собственные колебания). Период колебаний равен:
Мы снова пришли к формуле Томсона.
Гармоническая зависимость заряда от времени в общем случае имеет вид:
(11)
Циклическая частота находится по формуле (10); амплитуда и начальная фаза определяются из начальных условий.
Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :
(12)
Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12), опять-таки не забывая о правиле нахождения производной сложной функции:
Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:
(13)
Амплитуда силы тока равна:
Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2).
Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13).
А теперь посмотрите на рис. 8. Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!
Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13). Для наглядности представим эти графики в одних координатных осях (рис. 11).
Рис. 11. Графики колебаний заряда и тока
Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда. Используя формулу приведения
Используя формулу приведения
запишем закон изменения тока (13) в виде:
Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе
заряд на ; илисдвиг фаз между током и зарядом равен ; илиразность фаз между током и зарядом равна .
Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево
на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).
Расчет энергии ионистора
Емкость современных миниатюрных ионисторов достигает единиц Фарад. Для обычных конденсаторов — это единица МИКРОфарад. Т.е. если воспользовать формулой, то получится что ионистор на 100 фарад при напряжении в 1 вольт может сохранять энергию в 50 Джоулей. А это уже неплохо.
Вся энергия заряженного конденсатора накапливается в электрическом поле между его пластинами. Энергию, сосредоточенную в конденсаторе, можно вычислить следующим методом. Давайте представим себе, что мы заряжаем емкость не сразу, а потихоньку, перенося электрические заряды с одной его металлической пластины на другую.
Принимая максимальное значение доступной энергии и оценивая, что запрашиваемая мощность является максимальной, как долго может длиться фаза ускорения? У нас есть электрический автомобиль, чтобы закончить. Какова тогда масса батареи суперконденсатора, обеспечивающая соответственно потребность в автономии и потреблении электроэнергии?
Сохранение и управление электроэнергией становится все более актуальной проблемой из-за изменения климата и дефицита энергии. Общественность также все больше осознает негативное воздействие традиционных источников энергии на окружающую среду, что способствует усилиям по поиску альтернативных, устойчивых и экологически чистых источников энергии.
Во время переноса первого заряда работа, совершенная нами, будет относительно небольшой. На уже на перенос второго электрического заряда мы истратим больше энергии, так как из-за переноса первого заряда, между металлическими пластинами конденсатора возникнет разность потенциалов, которую нам необходимо преодолевать, третий, четвертый и каждый последующий за ними одиночный заряд будет переносить значительно труднее и на их перенос придется расходовать все больше и больше энергии. Пусть мы перекинем таким образом некоторое определенное количество зарядов, которое мы условно обозначим латинской буквой Q
Экономичный и экологически чистый
Се и его команда создали мембрану, из которой они обещают не только более эффективное управление затратами энергии, но и экологичность. Это значительно превышает верхний предел 1 мкФ на квадратный сантиметр для стандартного конденсатора. Новая мембрана является экономически эффективной и экологически чистой. Затраты на хранение энергии также резко сократились. Се говорит: Если мы сравним перезаряжаемые батареи и суперконденсаторы, наша собственная диафрагма упростит настройку устройства и низкие производственные затраты. Кроме того, производительность диафрагмы превышает перезаряжаемые батареи, такие как литий-ионные батареи, свинцово-кислотные батареи и суперконденсаторы.
Энергия поля конденсатора — обучающий видео фильм
Вся энергия, потраченная при заряде конденсатора, скопиться в электрическом поле между его металлическими пластинами. Напряжение между пластинами конденсатора в конце процесса заряда мы условно обозначим латинской буквой U
Как мы уже поняли, разность потенциалов в процессе заряда емкости не остается постоянной, а постепенно возрастает от нуля — в начале заряда — до своего конечного значения напряжения. Для упрощения расчета энергии поля допустим, что мы перенесли полностью весь электрический заряд Q с одной пластины на другую не маленькими частями, а сразу. Но при этом мы считаем, что напряжение между металлическими пластинами было не ноль, как в начальный момент, и не какое-то значение U
, как в конце процесса заряда, а равнялось какому-то среднему значению от нуля и до U, т. е.половине U . Таким образом, энергия, накопленная в электрическом поле емкости, будет равна половине напряжения U, умноженной весь заряд перенесенного электричестваQ .
Объемная плотность электрической энергии
Рассмотренные выше зависимости и формулы можно преобразовать, чтобы уточнить влияние связанных параметров на энергетический потенциал определенной конструкции:
- W = ½ (C * U2) = d *q2/(2*e0*S) = ((e0 * E2)/2) * S*d;
- однако произведение S*d равно объему (V);
- таким образом, исходное выражение для расчета приобретает вид:
W = ((e0 * E2)/2) * V.
По итоговому варианту становится понятным, сколько энергии электрического поля сосредоточено внутри определенного объема. Исходя из того можно сделать вывод о наличии соответствующих свойств самого поля. Теоретические знания подтверждены расчетами. Для оценки эффективности конкретных изделий применяют удельный показатель (объемную плотность) w = W/V = (e0 * E2)/2. При заполнении диэлектриком формулы дополняют соответствующими данными электрической проницаемости (e).
Вектора магнитной индукции (В) и напряженности (Е) формируют электромагнитное поле. Для расчета силы, перемещающей соленоид, надо учитывать силовые компоненты в совокупности. Соответствующие коррекции делают при создании колебательного контура. Максимальный энергетический потенциал можно получить с помощью увеличения диэлектрической проницаемости слоя между обкладками конденсатора.
Единица и формулы расчёта
Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.
Математическое выражение фарада
Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:
- пикофарад — 10—12 Ф;
- нанофарад — 10—9 Ф;
- микрофарад — 10—6 Ф.
Диэлектрическая проницаемость
Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:
- А — площадь меньшей пластины;
- d — расстояние между ними;
- ε — абсолютная проницаемость используемого диэлектрического материала.
На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:
- 1,0006 — воздух;
- 2,5—3,5 — бумага;
- 3—10 — стекло;
- 5—7 — слюда.