Емкостное сопротивление

Содержание

Индуктивное сопротивление катушки

Сопротивление тока: формула

Катушка индуктивности – пассивный компонент электросхем, который имеет возможность сохранять электроэнергию посредством превращения ее в магнитное поле. Такой процесс является главной функцией такого электрического компонента.

Емкостное сопротивление
Разновидности обозначения катушек индуктивности на электросхемах

По своим свойствам и основным техническим характеристикам индуктивная катушка напоминает конденсатор, какой преобразует энергию в электрополе.

Индуктивность заключается в том, что вокруг проводникового элемента с током образуется магнитное поле. Связано это с ЭДС, что противодействует силе тока и приложенному электронапряжению в катушке. Это свойство есть индуктивное сопротивление катушки. Ее индуктивность можно увеличить посредством увеличения количества витков в ней.

Емкостное сопротивление
Внешний вид сверхмощной катушки индуктивности

Интересно знать. Согласно закону Ома, сила электротока обратно пропорциональна сопротивлению и прямо пропорциональна электронапряжению в цепи. Если принять сопротивление катушки току переменного типа за величину ωL, то получится закон Ома для электрической цепи с чистой индуктивной нагрузкой. Формула будет выглядеть так: U0=I0*ωL.

Для выяснения количественной характеристики индуктивного сопротивления катушки стоит помнить, что оно противодействует электротоку переменного типа. На практике же индуктивная катушка имеет свое собственное некоторое сопротивление.

Переменный синусоидальный электроток, проходящий через катушку, приводит к возникновению ЭДС, или синусоидального электронапряжения переменного типа

Зная такое важное понятие, как индуктивное сопротивление, а также формулы и зависимости этой величины, можно производить верные расчеты во многих отраслях промышленности, электротехнике и энергетике

Особенности измерений

Если представить, что электрический ток — это текущая по трубе вода, а напряжение — действующий напор, то многие понятия и формулы становятся понятными. Когда труба перекрыта, то напор есть, а воды нет. Пока не появится потребитель, то есть нагрузка, он не потечет. А сопротивление — это подводные камни в русле, мешающие свободному прохождению потока, но заставляющие его работать.

Емкостное сопротивление

Сила тока в физическом понимании — это количество заряженных частиц, протекающих в единицу времени через определенную точку системы. Измеряется она в амперах А или миллиамперах мА.

Емкостное сопротивление

Измерения проводятся с помощью амперметров, а также бытовых или профессиональных мультиметров. Цифровые измерители просты и удобны в работе. Они позволяют установить не только силу тока и напряжение, но и другие характеристики — сопротивление, емкость конденсаторов, частоту переменного тока и т.д. Опасной для человека считается сила тока, превышающая 15 мА, при которой происходит спазм мышц. А удар в 100 мА — это практически всегда смертельный исход. Поэтому все работы, связанные с сетями под напряжением, должны производиться строго с соблюдением техники безопасности.

Способы соединения элементов

Монтаж изделия на плату может быть вертикальным или горизонтальным. При использовании нескольких изделий они могут быть соединены между собой разными способами.

Параллельное соединение

Для его организации нужно подключить группу деталей к электроцепи так, чтобы обкладки всех деталей были подсоединены напрямую к местам включения. Поскольку все компоненты получают заряд от одного источника тока, у них будет одинаковая разность потенциалов. Но так как заряд копится на каждом изделии отдельно, количество электричества на группе можно выразить как сумму количеств на ее деталях.

Это справедливо и для емкостных данных – значение для конфигурации равно сумме значений каждой единицы. Поэтому такую группу можно считать равной одному конденсатору, емкостной параметр которого равен сумме таковых для всех частей.

Последовательное соединение

Эта схема подразумевает соединение устройств одно за другим, когда к местам подключения к цепи подсоединены только два крайних изделия. Количество электричества для каждой детали будет одинаковым. При этом, чем менее емкое устройство, тем большее значение напряжения на нем будет наблюдаться.

Последовательное подключение

Смешанное соединение

Такая сложная конструкция содержит фрагменты с двумя вышеприведенными типами соединений. Чтобы подсчитать полную емкость, схему делят на простые блоки, состоящие только из деталей, соединенных каким-то одним образом. Находят эквивалентные значения для каждого блока и затем рисуют схему заново в упрощенном виде. Рассчитывают данные для получившейся системы.

Чтобы суметь подобрать подходящий конденсаторный набор, нужно уметь узнавать емкостные данные

Важно также знать, как рассчитывается показатель для конфигурации из нескольких деталей, соединенных между собой тем или иным образом

Формула закона Ома

Первый Закон Ома устанавливает, что разница потенциалов между двумя точками резистора пропорциональна току. Более того, согласно этому закону, соотношение между потенциалом и током всегда является постоянным для омических резисторов.

V = RI, где:

V — напряжение/электропотенциал (В);

R — электросопротивление (ом);

I — электрический ток.

В нем U является скалярной величиной и меряется в (В). Разница в электропотенциалах между двумя точками цепи, указывает на наличие электросопротивления. Когда I проходит через резистивный элемент R, происходит падение электрического потенциала. Это различие возникает из-за рассеивания энергии, называемым эффектом Джоуля. I измеряет поток зарядов через тело в (А) и прямо пропорционален сопротивлению провода.

Второй закон Ома говорит о том, что электросопротивление R представляет собой свойство из тела, которое регулирует проходимость I. Это свойство зависит от геометрических факторов тела, таких как длина или площадь сечения участка и от вызываемой величины R. Его количество зависит исключительно от материала участка.

R= ρ*L/S, где:

R — электросопротивление (Ом);

ρ — удельное электросопротивление провода (Ом.м);

L — протяженность проводника (м);

S — площадь сечения провода (м2).

Омическим резистором называется любое тело, способное представлять постоянное сопротивление для данного диапазона напряжений. График напряжения как функция тока для омических резисторов является линейным. Резистор можно считать омическим в диапазоне, в котором его потенциал линейно возрастает с ростом I.

Сопротивление можно понимать как наклон линии, заданный тангенсом угла. Как известно, тангенс определяется, как отношение между противоположным и соседним сторонами, и, в случае, когда сопротивления омические, может быть рассчитан по формуле: R = U / I.

Треугольник

Чтобы помочь запомнить формулу, можно использовать треугольник с одной горизонтальной стороной и вершиной вверху, как пирамиду. Это иногда называют законом треугольника Ома. В верхнем его углу находится буква V, в левом углу — буква I, а в правом нижнем углу — R.

Обратите внимание! Чтобы использовать треугольник, прикрыть неизвестный параметр, а затем, рассчитать его из двух других. Если они находятся на одной линии, они умножаются, но если одна находится над другой, их следует разделить. Другими словами, если необходимо рассчитать I, напряжение делится на сопротивление, то есть V / R

Другими словами, если необходимо рассчитать I, напряжение делится на сопротивление, то есть V / R.

Для полной замкнутой цепи

Закон Ома для полной цепи определение — ЭДС электрического элемента аккумулятора или источника — это общая работа, выполненная внутри и снаружи элемента для переноса электрических зарядов в электроцепи. Если обозначим ЭДС аккумулятора через E (B), суммарная сила тока для полной цепи I (А), внешнее сопротивление R (Ом) и внутреннее сопротивление ячейки r по (Ом).

Тогда: E = I*R + I*r

E = I*(R + r)

I = E/(R + r)

Замкнутая сеть

Это выражение известно, как закон Ома для замкнутого контура, где: I — интенсивность тока равна E общей электродвижущей силе деленной на (R + r) — общее сопротивление цепи.

Связь между ЭДС (E) электрической ячейки и напряжением на ее полюсах (V). На основании закона Ома для замкнутых цепей:

E = IR + I r, V = IR

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Популярные статьи  Безопасно ли пользоваться душевой кабиной, если на ней бывший владелец оставил 2 провода?

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения. На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно:

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Важно! Этот способ получения нужных напряжений считается не только очень простым, но и самым опасным, поскольку индуктивной развязки от высокого потенциала здесь не существует. Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками

При расчёте требуемой ёмкости обычно исходят из следующих соображений:

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Емкостное сопротивление
Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Xс=1/ ω C.

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Практическое использование реактивного сопротивления

С помощью конденсаторных установок осуществляется компенсация реактивной мощности. Через электрические сети высоковольтная электроэнергия передается на большие расстояния. В большинстве случаев она потребляется электродвигателями с резистивными элементами и значительным индуктивным сопротивлением.

Полная мощность, поступающая к потребителям, включает в себя активную составляющую Р, с помощью которой совершается полезная работа, и реактивную составляющую Q, приводящую к нагреву обмоток электродвигателей и трансформаторов. Качество электроэнергии существенно снижается под действием реактивной составляющей, возникающей на индуктивных сопротивлениях. Для того чтобы ликвидировать ее негативное воздействие, была разработана специальная схема компенсации. С этой целью подключались конденсаторные батареи, емкостное сопротивление которых способствовало понижению косинуса угла ф.

Емкостное сопротивление

Установка таких конденсаторных батарей практиковалась в основном на подстанциях, осуществляющих непосредственную поставку электроэнергии проблемным потребителям. Данное мероприятие позволяло эффективно регулировать качество поставляемой энергии.

Снижение уровня реактивной компоненты способствует существенному уменьшению нагрузки на установленное оборудование, хотя активная мощность остается на одном и том же уровне. Используя реактивное сопротивление конденсатора, удалось добиться экономии электроэнергии на предприятиях промышленного производства и объектах жилищно-коммунального хозяйства, повысить надежность работы энергетических систем.

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Ёмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Вам это будет интересно  Материал, из какого должен изготавливаться искусственный заземлитель

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Свойства емкостей

Общее сопротивление

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Будет интересно Чем отличается пусковой конденсатор от рабочего?

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Популярные статьи  В розетке ток постоянный или переменный

Емкостное сопротивление
Импеданс элемента.

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.

Лабораторные работы по разделу Электричество

  1. Краткое теоретическое описание

В цепи переменного тока кроме резисторов могут использоваться катушки индуктивности и конденсаторы. Для постоянного тока катушка индуктивности имеет только активное сопротивление, которое обычно невелико (если катушка не содержит большое количество витков). Конденсатор же в цепи постоянного тока представляет «разрыв» (очень большое активное сопротивление). Для переменного тока эти элементы обладают специфическим реактивным сопротивлением, которое зависит как от номиналов деталей, так и от частоты переменного тока, протекающего через катушку и конденсатор.

1.1. Катушка в цепи переменного тока.

Рассмотрим, что происходит в цепи, содержащей резистор и катушку индуктивности. Колебания силы тока, протекающего через катушку:

Основы электротехники выполнение курсовой работы Преобразовать соединение звездой сопротивлений в эквивалентное соединение треугольником сопротивлений

вызывают падение напряжения на концах катушки в соответствии с законом самоиндукции и правилом Ленца:

т.е. колебания напряжения опережают по фазе колебания силы тока на p /2. Произведение w LIm

является амплитудой колебания напряжения:

Произведение циклической частоты на индуктивность называют индуктивным сопротивлением

катушки:

(1)

поэтому связь между амплитудами напряжения и тока на катушке совпадает по форме с законом Ома для участка цепи постоянного тока:

(2)

Как видно из выражения (1), индуктивное сопротивление не является постоянной величиной для данной катушки, а пропорционально частоте переменного тока через катушку. Поэтому амплитуда колебаний силы тока Im

в проводнике с индуктивностьюL при постоянной амплитудеUL напряжения убывает обратно пропорционально частоте переменного тока:

1.2. Конденсатор в цепи переменного тока.

При изменении напряжения на обкладках конденсатора по гармоническому закону:

заряд q

на его обкладках изменяется также по гармоническому закону:

Электрический ток в цепи возникает в результате изменения заряда конденсатора, поэтому колебания силы тока в цепи будут происходить по закону:

Видно, что колебания напряжения на конденсаторе отстают по фазе от колебаний силы тока на p /2. Произведение w CUm

является амплитудой колебаний силы тока:

Аналогично тому, как было сделано с индуктивностью, введем понятие емкостного сопротивления

конденсатора:

(3)

Для конденсатора получаем соотношение, аналогичное закону Ома:

(4)

Формулы (2) и (4) справедливы и для эффективных значений тока и напряжения.

Порядок выполнения работы
Соберите цепь показанную на рисунке 1.
Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Конденсатор – рабочее напряжение 400 В, емкость 10 мкФ;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

Изменяя емкость конденсатора от 5 до 50 мкФ (через 5 мкФ), запишите показания вольтметров (напряжение на конденсаторе и на резисторе).
Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения емкости конденсатора (для этого надо напряжение на резисторе разделить на его сопротивление).
Определите значения емкостных сопротивлений конденсатора для соответствующих значений его емкости и сравните их с рассчитанными по формуле (3).
Установите емкость конденсатора 10 мкФ. Изменяя частоту генератора от 20 до 100 Гц через 10 Гц, повторите измерения и расчеты емкостного сопротивления в зависимости от частоты переменного тока.
Соберите цепь показанную на рисунке 2.

Рис.1. Рис.2.

Установите следующие значения параметров:

Генератор – напряжение (эффективное) 100 В, частота 100 Гц;

Катушка — индуктивность 50 мГн;

Резистор – рабочая мощность 500 Вт, сопротивление 100 Ом.

Изменяя индуктивность катушки от 50 до 500 мГн (через 50 мГн), запишите показания вольтметров (напряжение на катушке и на резисторе).
Рассчитайте эффективное значение токов, текущих в цепи, в зависимости от значения индуктивности катушки (для этого надо напряжение на резисторе разделить на его сопротивление).
Определите индуктивные сопротивления катушки для соответствующих значений ее индуктивности и сравните их с рассчитанными по формуле (1).
Установите индуктивность катушки 100 мГн. Изменяя частоту генератора от 20 до 100 Гц через 10 Гц, повторите измерения и расчеты индуктивного сопротивления в зависимости от частоты переменного тока..
Постройте графики зависимостей индуктивного и емкостного сопротивлений от частоты переменного тока.

цифровая электроника вычислительная техника встраиваемые системы

Делаем простой настроечный конденсатор для УКВ своими руками

Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.

Емкостное сопротивление

К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.

Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.

Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.

Емкостное сопротивление

Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.

На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.

На заключительном этапе нужно просто согнуть внешний конец провода катушки по направлению к внутреннему концу, затем срежьте излишки. Далее возьмите нож или другое лезвие и снимите эмаль с конца провода. В конечном итоге возьмите отрезанный кусок провода, зачистите его весь и припаяйте его к куску текстолита между двумя гайками. Сделайте так, чтобы оба конца катушки имели длину около 12-15 мм. Теперь вы можете подключать этими концами ваш самодельный настроечный конденсатор переменной емкости к вашему радиоприемнику.

Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.

Формула расчета реактивного сопротивления

В общем случае для деталей катушечного типа применяются выражения:

X = L*w = 2* π*f*L.

Для конденсаторов применяют формулы:

X = 1/(w*C)= 1/(2* π*f*C).

Для конкретного элемента, нужные параметры которого известны, величина может быть вычислена с использованием онлайн калькулятора. В форму потребуется ввести нужные данные и нажать на кнопку, инициирующую расчеты.

Умение рассчитывать данную составляющую сопротивляемости поможет узнать величину тепловых потерь на используемых нагрузках. При параллельном подсоединении конденсатора с подходящей емкостью можно решить проблему энергетических потерь на индуктивных нагрузках.

Популярные статьи  Расчет освещения

Характеристики прибора

Важнейшей характеристикой накопительного прибора является ёмкость. От неё зависит время заряда при подключении устройства к источнику тока. Время разряда напрямую связано со значением сопротивления нагрузки: чем оно выше, тем быстрее происходит процесс отдачи накопленной энергии. Определяется эта ёмкость следующим выражением:

Будет интересно Как обозначаются конденсаторы на схеме?

C = E*Eo*S / d, где E — относительная диэлектрическая проницаемость среды (справочная величина), S — площадь пластин, d — расстояние между ними. Кроме ёмкости конденсатор характеризуется рядом параметров, такими как:

  • удельная ёмкость — определяет отношение величины ёмкости к массе диэлектрика;
  • рабочее напряжение — номинальное значение, которое может выдержать устройство при подаче его на обкладки элемента;
  • температурная стабильность — интервал, в котором ёмкость конденсатора практически не изменяется;
  • сопротивление изоляции — характеризуется саморазрядом устройства и определяется током утечки;
  • эквивалентное сопротивление — состоит из потерь, образуемых на выводах прибора и слое диэлектрика;
  • абсорбция — процесс возникновения разности потенциалов на обкладках после разряда устройства до нуля;
  • ёмкостное сопротивление — уменьшение проводимости при подаче переменного тока;
  • полярность — из-за физических свойств материала, используемого при изготовлении, конденсатор сможет правильно работать, только если к обкладкам приложен потенциал с определённым знаком;
  • эквивалентная индуктивность — паразитный параметр, появляющийся на контактах устройства и превращающий конденсатор в колебательный контур.

Емкостное сопротивление
Таблицы максимальных значений емкости конденсаторов.

Для постоянного тока

Закон Ома определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи. Наиболее популярна формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, т.е.

I = U / R где I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)
R — сопротивление, измеряется в Омах, (Ω)

Закон Ома, является основополагающим в электротехнике и электронике. Без его понимания также не представляется работа подготовленного специалиста в области КИП и А. Когда-то была даже распространена такая поговорка, — «Не знаешь закон Ома, — сиди дома..».

Помимо закона Ома, важнейшим является понятие электрической мощности, P:

Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U), т.е.

P = I × U где P — эл. мощность, измеряемая в Ваттах, (W)
I — сила тока, измеряемая в Амперах, (A)   
U — напряжение, измеряемое в Вольтах, (V)

Комбинируя эти две формулы, выведем зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:

Сила тока, I= U/R P/U √(P/R)
Напряжение, U= I×R P/I √(P×R)
Сопротивление, R= U/I P/I² U²/P
Мощность, P= I×U I²×R U²/R

Практический пример использования таблицы: Покупая в магазине утюг, мощностью 1 кВт (1 кВт = 1000 Вт), высчитываем на какой минимальный ток должна быть рассчитана розетка в которую предполагается включать данную покупку:
Несмотря на то, что утюг включается в сеть переменного тока, пренебрегаем его реактивным сопротивлением (см. ниже), и используем упрощенную формулу для постоянного тока. Находим в таблице I = P / U. Получаем: 1000 кВт / 220 В (напряжение сети) = 4,5 Ампера. Это и есть минимальный ток, который должна выдерживать розетка, при подключении к ней нагрузки мощностью 1 кВт.

Наиболее распространенные множительные приставки:

  • Сила тока, Амперы (A): 1 килоампер (1 kА) = 1000 А. 1 миллиампер (1 mA) = 0,001 A. 1 микроампер (1 µA) = 0,000001 A.
  • Напряжение, Вольты (V): 1 киловольт (1kV) = 1000 V. 1 милливольт (1 mV) = 0,001 V. 1 микровольт (1 µV) = 0,000001 V.
  • Сопротивление, Омы (Om): 1 мегаом (1 MOm) = 1000000 Om. 1 килоом (1 kOm) = 1000 Om.
  • Мощность, Ватты (W): 1 мегаватт (1 MW) = 1000000 W. 1 киловатт (1 kW) = 1000 W. 1 милливатт (1 mW) = 0,001 W.

Принятые единицы измерения

При использовании закона Ома для практических расчетов все математические вычисления выполняются в установленных единицах измерений для всех 3-х величин:

  • Сила тока – в амперах (А).
  • Напряжение – в вольтах (В/V).
  • Сопротивление – в омах (Ом).

Исходные данные и другие параметры, представленные в единицах, должны переводиться в общепринятые значения.

Действие основных единиц и физическое соблюдение закона Ома невозможно в следующих ситуациях:

  • Наличие высоких частот, при которых электрическое поле изменяется с большой скоростью.
  • Низкотемпературный режим и сверхпроводимость.
  • Сильно разогретые спирали ламп накаливания, когда отсутствует линейность напряжения.
  • Пробой проводника или диэлектрика, вызванный высоким напряжением.
  • Электронные и вакуумные лампы, заполненные газами.
  • Полупроводники с р-п-переходами, в том числе, диоды и транзисторы.

Сила тока

Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.

Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.

Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.

Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:

I = U/R

Сопротивление

Рассматривая закон ома для участка цепи, нельзя забывать о таком понятии, как сопротивление. Данная величина считается основной характеристикой проводника, поскольку именно сопротивление влияет на качество проводимости. Разные материалы проводят ток лучше или хуже. Это объясняется неоднородностью их структуры, различиями в кристаллических решетках. Поэтому в одних случаях электроны движутся с большей скоростью, а в других – с меньшей.

Собственным электрическим сопротивлением обладают все проводники, находящиеся в твердом, жидком, газообразном и плазменном состоянии. У каждого из них своя характеристика, называемая удельным сопротивлением. Данная величина отражает способность каждого материала к сопротивлению. За эталон принимается проводник длиной 1 м с поперечным сечением 1 м².

По закону Ома на участке цепи эта величина определяется: R = U/I.

Напряжение

Напряжение относится к важным характеристикам электрического тока, протекающего в проводнике. С физической точки зрения, это работа электрического поля, которое перемещает заряд на какое-то расстояние. В электротехнике напряжением считается разность потенциалов между двумя точками участка цепи. На практике эта величина служит для определения возможности подключения к сети потребителей электроэнергии, продолжительность их работы в этом состоянии.

В электрической цепи напряжение возникает следующим образом:

  • Вначале цепь подключается к источнику тока путем соединения с двумя полюсами. Это может быть генератор или батарея.
  • На одном полюсе или клемме – избыточное количество электроном, а на другом – их недостает. Первый условно считается положительным, второй – отрицательным.
  • Электрическое поле источника энергии воздействуют на электроны положительного полюса и самого проводника, заставляя их двигаться в сторону отрицательного полюса и притягиваться к нему. Такое притяжение происходит из-за положительного заряда на этом полюсе, поскольку электроны здесь отсутствуют.
  • Между обеими клеммами возникает разность потенциалов с определенным значением, что приводит к упорядоченному движению электронов в проводниках и подключенных нагрузках. Постепенно избыток электронов положительного полюса уменьшается, соответственно, снижается и потенциал. Характерным примером служит аккумуляторная батарея. При подключении нагрузки, ее потенциал будет падать, вплоть до полной разрядки. Для восстановления первоначальных свойств, потребуется подзарядка от постороннего источника тока.

При неизменной мощности источника энергии, значение напряжения может быть разным под действием следующих факторов:

  1. Материал соединительных проводников. У каждого свой вольтамперный график.
  2. Количество потребителей, подключенных к сети.
  3. Температура окружающей среды.
  4. Качество монтажа самой сети.
Оцените статью
Adblock
detector