Формулами
Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.
Через заряд и время
Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.
Рис. 1. Определение понятия сила тока
Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t
Через мощность и напряжение
В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.
Данное выражение вытекает из формулы для расчета мощности: P = IU.
Через напряжение или мощность и сопротивление
Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда
Переменный ток
Термин поясняет особенности одного из разновидностей электрического тока, который постоянно меняется с течением времени. Изменения происходят как по величине абсолютный показателей, так и по направлению. Как частный случай, возможны изменения только по величине, при сохранении неизменным направления колебательного движения в электрической цепи. Такой ток (переменный) повсеместно используется в осветительной сети бытового назначения, жилых домов, а также на многочисленных объектах промышленного назначения.
Если у постоянного тока электроны всегда движутся в одном направлении, то для переменного тока характерно многократное изменение не только направления, но и значений (несколько раз за единицу времени). Все такие изменения происходят в соответствии с одним законом – гармоническим. На картинке, отображаемой с помощью осциллографа такую картинку можно увидеть в форме четкой, геометрически точной синусоиды
Важно понимать, что переменный ток является алгебраической величиной, поэтому указывать его знак можно только с учетом конкретного мгновенного значения (с учетом того, в каком направлении осуществляется движение электронов в конкретный момент времени)
ОСНОВНЫЕ ФОРМУЛЫ ЭЛЕКТРОТЕХНИКИ
Математическая зависимость основных величин для закона Ома приведена в табл.1
Таблица 1. закон Ома для участка цепи
Закон Ома для замкнутой цепи (рис. 1) , где Е – эдс источника тока; — внутреннее сопротивление источника тока; Z – суммарное сопротивление внешней цепи.
Первый закон Кирхгофа: алгебраическая сумма токов в узловой точке электрической цепи рана нулю: (рис. 2,а).
Рис.1 замкнутая цепь(по закону Ома) |
Рис.2 схемы к закону Кирхгофа: а — узловая точка (к I закону Кирхгофа), б – замкнутый контур (ко II закону Кирхгофа) |
Таблица 2. формулы для определения сопротивлений, индуктивностей и емкостей
Таблица 9. переходные процессы при включении резисторов R и конденсаторов С
Второй закон Кирхгофа: алгебраическая сумма всех эдс в замкнутом контуре равна алгебраической сумме падений напряжений на всех элементах, составляющих цепь: (рис. 2,б)
Закон сложения сопротивлений и проводимостей: при последовательном соединении суммируются сопротивления, при параллельном соединении – проводимости. Расчетные формулы для определения сопротивления R, индуктивностей L и емкостей С приведены в таблице 2.
Переходные процессы возникают в электрической цепи, содержащей индуктивности L и емкости С в период перехода от одного установившегося режима к другому за счет постепенного изменения энергий электрического и магнитного полей.
Первый закон коммутации: в начальный момент после коммутации ток в индуктивности остается таким же, каким он был непосредственно перед коммутацией, а затем плавно изменяется.
Второй закон коммутации:в начальный момент после коммутации напряжение на емкости остается таким же, каким было непосредственно перед коммутацией, а затем плавно изменяется. Расчетные формулы напряжения и тока при замыкании цепи приведены втабл. 3.
ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ
Рис. 3. синусоидальное колебание |
Мгновенные значения электрических колебаний переменного тока и напряжения математически записываются в виде ; где , где , -амплитуда колебаний; — круговая частота; t – время; — начальная фаза. Графическое колебание показано на рис. 3. Основные зависимости параметров синусоидальных колебаний приведены в табл. 4.
Таблица 4. основные зависимости параметров синусоидальных колебаний
Параметр | Зависимость |
Круговая частота, рад/с | |
Частота колебаний, Гц | |
Период колебаний, с |
Действующие значения синусоидальных тока и напряжения определят по формулам или по показаниям прибора
ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА
Электрическая цепь состоит из источника электрической энергии, соединительных проводов и приемников электрической энергии.
Электрический ток, протекающий в электрической цепи, представляет собой направленный поток электронов, возникающий под действием электрического поля.
Силу тока измеряют в амперах (а). Один ампер — это сила тока, при которой через поперечное сечение проводника каждую секунду проходит один кулон электричества. В одном кулоне содержится 6,3·1018 зарядов электрона.
Электродвижущая сила (э. д. с.) источника электрической энергии включенного в цепь, определяется работой, совершаемой им при перемещении электрических зарядов по всей цепи.
Напряжение— часть электродвижущей силы, определяемая работой источника электрической энергии, которая совершается им при перемещении электрических зарядов на участке цепи. Мощность тока определяется работой, производимой (или потребляемой) в одну секунду, и измеряется в ваттах (вт).
Основные и производные формулы для расчета электрических цепей приведены в табл. 5 и 6.
Таблица 5
Основные формулы
Чипгуру
- Форум Правила форума
- Правила для Редакторов
- Правила конкурсов
- Руководство барахольщика
- Ликбез по форуму Изменить цвет форума
- Как вставлять фотографии
- Как вставлять ссылки
- Как вставлять видео
- Как обозначить оффтоп
- Как цитировать
- Склеивание сообщений
- Значки тем
- Подписка на темы
- Автоподписка на темы
БиБиКоды (BBCode)
Полигон для тренировок
Калькуляторы
- Металла
Обороты, диаметр, скорость
Подбора гидроцилиндров
Развертки витка шнека
Расчёт треугольника
Теплотехнический
Усилия гибки
Каталоги
- Подшипников
Универсально-сборные пр.
УСП-12
Справочники
- Марки стали и сплавы
Открытая база ГОСТов
Применимость сталей
Справочник конструктора
Справочник ЧГ сталей
Сравнение материалов
Стандарты резьбы
Таблицы
- Диаметров под резьбу
Конусов Морзе
Номеров модульных фрез
- Темы без ответов
- Активные темы
- Поиск
- Наша команда
Сравнительная таблица
Сравнительный график переменного тока и постоянного тока
Переменный ток | Постоянный ток | |
Количество энергии, которое можно нести | Безопасно переносить на большие расстояния по городу и может обеспечить большую мощность. | Напряжение постоянного тока не может перемещаться очень далеко, пока оно не начнет терять энергию. |
Причина направления потока электронов | Вращающийся магнит вдоль провода. | Устойчивый магнетизм вдоль провода. |
частота | Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. | Частота постоянного тока равна нулю. |
направление | Он меняет свое направление, пока течет по кругу. | Он течет в одном направлении в цепи. |
ток | Это величина, изменяющаяся во времени | Это ток постоянной величины. |
Поток электронов | Электроны продолжают переключать направления – вперед и назад. | Электроны неуклонно движутся в одном направлении или «вперед». |
Получен из | Генератор переменного тока и сеть. | Ячейка или батарея. |
Пассивные параметры | Сопротивление. | Только сопротивление |
Фактор силы | Лежит между 0 и 1. | это всегда 1. |
Типы | Синусоидальный, Трапециевидный, Треугольный, Квадратный. | Чистый и пульсирующий. |
Постоянный ток
Международный символ этого напряжения DC — Direct Current (постоянный ток), а условное обозначение на электросхемах «—» или «=». Величина и полярность этого вида напряжения являются неизменными, а сила тока изменяется только при изменениях нагрузки. Этот вид электрического тока производится аккумуляторами, батарейками и элементами солнечных электростанций.
От сети постоянного тока работают двигатели трамваев, троллейбусов и другого электротранспорта. Эти электродвигатели имеют лучшие тяговые характеристики, чем двигатели переменного тока.
Информация! От постоянного напряжения работает бОльшая часть электронных схем, но они получают питание от сети переменного тока через встроенный или внешний блок питания с выпрямителем.
Переменный ток
Международное обозначение этого напряжения AC — Alternating Current (переменный ток), а условное обозначение на электросхемах «~» или «≈».
Величина и полярность переменного тока в сети всё время меняется. Частота этих изменений составляет 50Гц в Европе и некоторых других странах и 60Гц в США. Большинство бытовых и промышленных электроприборов изготавливаются для питания переменным напряжением.
Практически вся электроэнергия, используемая в быту и промышленности, является переменной. Для передачи на большие расстояния его повышают при помощи трансформаторов, а в конечной точке линии понижают до необходимой величины. Это позволяет уменьшить стоимость ЛЭП и потери. Для того, чтобы исключить колебания напряжения, для особоважных приборов устанавливаются стабилизаторы.
При увеличении напряжения и неизменной передаваемой мощности сила тока и сечение проводов пропорционально уменьшается. Если напряжение не повышать, то для подачи электроэнергии к потребителю необходимо использовать кабеля большого сечения, а передача на большие расстояния окажется невозможной. Вот почему в розетке переменный ток.
В домашней розетке два контакта — фазный и нулевой. В некоторых случаях к ним добавляется заземляющий. Это однофазное напряжение является частью трёхфазной системы. Она включает в себя три одинаковых сети. Напряжение в этих сетях сдвинуто по фазе на 120° друг относительно друга.
Вначале эта система была шестипроводной. В таком виде её изобрёл Никола Тесла. Позже М. О. Доливо-Добровольский усовершенствовал эту схему и предложил передавать трёхфазное напряжение по трём или чётырём проводам (L1, L2, L3, N). Он также показал преимущества трёхфазной системы электроснабжения перед схемами с другим числом фаз.
Влияние частоты тока на электроприборы
Далее рассмотрим влияние частоты электрического тока. Увеличение частоты до сравнительно невысоких величин (1 — 10 тыс. Гц), обычно является следствием исключительно повышения номинальной мощности электроаппаратуры, поскольку таким образом возрастает проводимость газовых промежутков. Для измерения частоты в системе используют частотомеры.
Паровая турбина разрабатываются и создаются таким образом, чтобы при номинальной скорости вращения (частоте) обеспечивалась максимальная выходная мощность на валу. При этом уменьшение номинальной частоты является следствием возникновения потерь на удар пара о лопатки с единовременным повышением момента вращения, а повышение частоты — к снижению момента вращения.
Помимо этого, работа на пониженных частотах приводит к ускоренному износу рабочих лопаток и прочих частей и механизмов. Снижение частоты оказывает влияние на расход на собственные нужды станций.
Для электроэнергии основные показатели качества: напряжение и частота, для тепловой энергии: давление, температура пара и горячей воды. Частота связана с активной мощностью (Р), а напряжение с реактивной мощностью (Q).
Все вращающиеся машины и агрегаты рассчитаны таким образом, что экономический коэффициент полезного действия достигается при номинальном числе оборотов в минуту: n = 60f/p ,
где: n — число оборотов в минуту, f — частота тока в сети, p — число пар полюсов.
Частота переменного тока , вырабатываемая генераторами, есть функция числа оборотов турбины. Число оборотов механизмов — функция частоты.
На рис. 1 представлены относительные статические характеристики нагрузки для энергосистемы по частоте.
Анализ зависимостей на рис.1 показывает, что при уменьшении частоты снижается число оборотов двигателя, снижается производительность машин и механизмов.
1. Текстильная фабрика дает брак при изменении частоты от номинальной, т к. изменяется скорость движения нити и станки дают брак.
2. Насосы (питательные), вентиляция (дымососы) тепловых электростанций зависят от числа оборотов: давление пропорционально « n 2 », потребляемая мощность « n 3 », где n — число оборотов в минуту;
3. Активная мощность нагрузки синхронных двигателей пропорциональна частоте (при снижении частоты на 1%, активная мощность нагрузки синхронного двигателя уменьшается на 1%);
4. Активная мощность нагрузки асинхронных двигателей уменьшается на 3% при снижении частоты на 1%;
5. Для энергосистемы снижение частоты на 1% приводит к уменьшению суммарной мощности нагрузки на 1-2%.
Изменение частоты влияет на работу самих электростанций. Каждая турбина рассчитана на определенное число оборотов, то есть при падении частоты снижается вращающий момент турбины. Падение частоты влияет на собственные нужды электростанции и в результате может наступить нарушение работы агрегатов станции.
При понижении частоты из-за нехватки активной мощности снижается нагрузка потребителей, чтобы поддержать частоту на прежнем уровне . Степень изменения нагрузки при изменении частоты на единицу называется регулирующим эффектом нагрузки по частоте . Процесс нарушения устойчивой работы электростанции из-за падения частоты и при отсутствии резерва активной мощности называется лавиной частоты.
Электрическое напряжение делят на два вида:
- постоянное (dc)
- переменное (ас)
Обозначение постоянного тока (—), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.
В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.
Помимо этого, у переменного электрического тока существует деление ещё на два вида:
- однофазный
- трёхфазный
Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока, у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи, сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.
А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.
Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.
Конденсатор в цепи переменного тока
Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.
При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.
Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.
Рис. 6
Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока. При изменениях напряжения на обкладках конденсатора по гармоническому закону
\(~u = U_m \cdot \cos \omega t\) ,
заряд на его обкладках изменяется по закону:
\(~q = C \cdot u = U_m \cdot C \cdot \cos \omega t\) .
Электрический ток в цепи возникает в результате изменения заряда конденсатора: i
=q ’. Поэтому колебания силы тока в цепи происходят по закону: \(~i = -U_m \cdot \omega \cdot C \cdot \sin \omega t = U_m \cdot \omega \cdot C \cdot \cos (\omega t + \frac{\pi}{2})\) .Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на π/2 или колебания силы тока опережают по фазе колебания напряжения на π/2
(рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.
Рис. 7
Произведение \(U_m \cdot \omega \cdot C\) является амплитудой колебаний силы тока:
\(~I_m = U_m \cdot \omega \cdot C\) .
Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается Х
C): \(~X_C = \frac{U_m}{I_m} = \frac{1}{\omega \cdot C}\) . Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:
\(~I_m = \frac{U_m}{X_C}\) .
Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.
Как повысить напряжение в сети
Часто в деревнях и на дачах говорят о плохом напряжении в электросети. Это связанно не только с их плохим техническим состоянием, но и с покупкой разнообразной бытовой техникой, которой требуется электричество, которого часто не хватает.
В то же время местные электросети не спешат менять оборудование на современное, а значит, на более совершенное которое с достоинством выдержит повышенные нагрузки.
Участник дачного форума «Дом и Дача» Terristor как-то столкнулся с проблемой – стиральная машина перестала работать. То есть барабан с трудом крутился, да и насос не мог поднять воду из скважины.
На 1-ом Рисунке обычная работа понижающего трансформатора. На 2-ом уже переделанный трансформатор готовый к работе на повышение напряжения.
Он замерил напряжение, и прибор показал всего 180 вольт, а этого напряжения не хватает для работы многих бытовых электроприборов.
Но нет, худа без добра. Как-то раз он читал журнал «Радио» и на глаза ему попалась статья о том, как при помощи обычного понижающего трансформатора сделать повышающий.
А фокус состоял в том, что если взять понижающий трансформатор, который из 220 вольт делает 40, поковыряться в нём, то после небольших изменений можно получить на выходе не понижение, а повышения напряжения на 40 вольт от напряжения в сети.
Случайно у Terristor был такой трансформатор. И обладая небольшими познаниями в радиотехнике, он через 15 минут его переделал и сделал пробный пуск.
Перед испытанием напряжение было 192 вольта, а после, как и намечалось, напряжение увеличилось на 40 вольт. Это оказалось отличным решением в сложившейся ситуации и несмотря на нехватку напряжения электроприборы работали безотказно.
Плюсы этой систем:
Генерирование переменного тока
Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.
Инвертор
Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.
Инвертор 12/220 В, мощностью 1500 Вт
Фазорасщепитель
Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.
Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.
Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.
Какие есть фазы в токе
Многофазным может быть только переменный ток. Всего существует 3 разных фазы, и все они смещены на 120 градусов относительно друг друга. Каждая электростанция выдает по 4 провода: 3 фазовых и один для заземления, который является общим для всех трех. Электростанция вырабатывает три разные фазы переменного тока одновременно, и эти три фазы смещены строго под определённым углом.
Устройство фаз
Почему три фазы? Почему не одна, две или четыре? В 1-фазных и 2-фазных источниках питания имеет место явление, когда синусоида пересекает нулевую отметку 120 раз в секунду. При трехфазном питании в любой текущий момент одна из трех фаз приближается к пику. Таким образом, мощные 3-фазные двигатели (используемые в промышленности) и другие устройства, такие, как 3-фазное сварочное оборудование, имеют равномерную выходную мощность.
Вам это будет интересно На какую мощность рассчитан автомат 16а
Важно! Четыре фазы существенно не улучшат ситуацию, но зато добавят четвертый провод, что повысит сложность многих работ и обслуживания, поэтому 3 фазы – это общепринятое и оптимальное значение
Трехфазный
Трехфазная электроэнергия является распространенным методом генерации, передачи и распределения электроэнергии переменного показателя. Это тип многофазной системы и наиболее распространенный метод, используемый электрическими сетями во всем мире для передачи энергии. Он также используется для питания больших двигателей и при возникновении тяжелых нагрузок.
Трехфазная цепь, как правило, более экономична, чем эквивалентная двухпроводная однофазная при том же напряжённости линии и заземлении, поскольку для передачи заданного количества электрической энергии используется меньше материала проводника.
Интересный факт: Многофазные энергосистемы были изобретены Галилео Феррари, Михаилом Доливо-Добровольским, Йонасом Венстремом, Джоном Хопкинсоном и Николой Теслой ещё в конце 1880-х годов, и основные принципы работы применяются вплоть до сегодняшнего дня.
Движение частиц
Двухфазный
Двухфазная электрическая мощность была единственной доступной системой распределения электроэнергии переменного тока в начале 20-го века. В то время использовались две цепи, причем фазы напряжения отличались на четверть цикла, то есть, на 90°. Обычно в схемах применялись четыре провода, по два на каждую фазу. Реже применялись три провода с общим сердечником, но большего диаметра. Некоторые двухфазные генераторы прошлых лет имели две полные роторные сборки с физически смещенными обмотками для обеспечения двухфазной мощности.
На сегодняшний день двухфазный тое приобрёл широкое распространение в быту, так как каждый потребитель – житель квартиры или частного дома имеет определённое количество точек подключения бытовых приборов малой мощности.
Важно! При стандартной работе наиболее распространённых домашних приборов двухфазная электрическая цепь в полном объёме удовлетворяет потребности владельцев жилой недвижимости. Турбогенераторные установки на Ниагарском водопаде, построенные в 1895 году, были крупнейшими в мире на то время и представляли собой именно двухфазные машины
Однако, в конечном итоге, трёхфазные системы заменили безнадёжно устаревшие и малоэффективные оригинальные агрегаты для генерации и передачи энергии. В настоящее время в мире осталось мало промышленных двухфазных распределительных систем, например, в Филадельфии, штат Пенсильвания
Турбогенераторные установки на Ниагарском водопаде, построенные в 1895 году, были крупнейшими в мире на то время и представляли собой именно двухфазные машины. Однако, в конечном итоге, трёхфазные системы заменили безнадёжно устаревшие и малоэффективные оригинальные агрегаты для генерации и передачи энергии. В настоящее время в мире осталось мало промышленных двухфазных распределительных систем, например, в Филадельфии, штат Пенсильвания.
Вам это будет интересно Как рассчитать заземление
Двухфазный ток
формулы тоэ | энергетик
ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)
Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:
Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях)
Поэтому определимся сразу с буквенным обозначением:
Какие токи бывают
Для питания электрических устройств и электротехники необходима энергия. Постоянный и переменный токи являются способом передачи энергии из одной точки в другую с использованием проводников.
Важно! Основное различие между ними заключается в характере движения заряженных частиц. Постоянный ток течет равномерно в одном направлении, в то время, как переменный постоянно изменяет направление с заданной скоростью или частотой
Основным следствием этого является полярность напряжения.
Постоянный
Постоянный ток характеризуется неизменным показателем полярности заряженных частиц
Поскольку постоянный ток сохраняет постоянную полярность, важно обращать внимание на то, как подключается устройством – неверное подключение устройства к сети с большой долей вероятности выедет его из строя. Хорошим примером являются устройства с автономным питанием от аккумуляторов – на них всегда наносятся обозначения для их корректного подключения. В противном случае, техника просто не заработает, так как не получит электропитания
В противном случае, техника просто не заработает, так как не получит электропитания.
Важно! При использовании постоянного тока, показатель напряжения может сильно разниться, в зависимости от используемого устройства. Типовые значения номинального напряжения автономных источников питания составляют 1.5V, 3.7V, 6V, 9V,12V, 24V и т.д
Вам это будет интересно Формулировка и определение закона Ома
Изменение направления тока
Переменный
С переменным током полярность постоянно переключается между положительным и отрицательным значениями. При подобной характеристике силового поля напряжение будет постоянно меняться, а полярность в таком случае не оказывает никакого влияния на работоспособность сети. Именно поэтому, любое бытовое электрическое устройство можно включать в сеть, не задумываясь о положении вилки в розетке, то есть, о соблюдении корректной полярности.
Основной причиной широкого распространения переменного тока является относительная легкость и эффективность в увеличении, либо уменьшении напряжения. Это достигается с помощью трансформаторов, а количество изменений количественных показателей определяется числом обмоток.
Важно! Такая же трансформация допускается и для постоянной величины, но это явление не является эффективным для его применения на практике. Также, это является еще одной, дополнительной причиной, по которой в бытовой сети используется именно переменный ток
Фазы в батарейке
Несмотря на то, что более низкие напряжения легче генерировать, высокие показатели несут меньшие потери при их передаче на расстояния. Поэтому перед подачей потребителям переменное напряжение повышается до нескольких сотен киловольт. Но, как только электричество достигает своего пункта назначения, оно снижается до 110 или 220 вольт. Дело в том, что переменный показатель имеет два установленных стандартных напряжения, которые используются во всем мире: 220В и 110В. Частота в электротехнике играет определяющее значение, и устройства, рассчитанные под напряжение в 110В, не станут работать от сети в 220В.
Получение
Для получения токов с частотой до нескольких десятков килогерц применяют электромашинные генераторы, состоящие из двух основных частей: ротора и статора. Их обращённые друг к другу поверхности имеют зубцы, взаимное перемещение которых вызывает пульсацию магнитного поля. Частота получаемого таким образом тока равна произведению числа зубцов ротора на частоту его вращения. До 1950-х годов электромашинные радиопередатчики использовались в радиовещании и радиосвязи (см. Радиостанция Гриметон).
Более распространнёный способ получения ТВЧ — применение колебательных контуров. Это может быть электрическая цепь, имеющая в своём составе ёмкость и индуктивность. (См. Генератор сигналов).
Для получения сантиметровых и миллиметровых волн (то есть тока с частотой в миллиарды герц), используют приборы с объёмным резонатором (клистрон, магнетрон, ЛБВ, ЛОВ). В безвоздушном пространстве вблизи раскалённого катода помещают электрод, в котором сделаны одна или несколько полостей, в которые направляется поток электронов. При правильном подборе напряжения электрического поля, направления и мощности потока электронов он группируется в отдельные сгустки. Длина электромагнитной волны, получаемой в полости резонатора, приблизительно равна удвоенной длине этой полости.
Общее понятие о переменном токе[править]
Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.
Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.
Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.
Максимальное мгновенное значение переменного тока, которое он достигает в процессе своего изменения, называется амплитудой тока .
- График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.
Развёрнутая диаграмма переменного синусоидального тока
На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени , характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени , — изменение отрицательных величин.
В начальный момент времени ток равен нулю . Затем он с течением времени растёт в положительном направлении, в момент времени достигает максимального значения, после чего убывает по величине и в момент времени становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при , после чего убывает и при становится равным нулю.
Области применения мультиметров
Мультиметры – общее название для целого класса электроизмерительных приборов. Они способны проверять целостность электрических цепей, изоляции и заземления; измерять параметры цепи без контакта с проводниками и определять характеристики радиоэлектронных компонентов.
— электриками при обслуживании электрических линий и потребителей;
— электронщиками при сборке, настройке и ремонте радиоэлектронной аппаратуры;
— сервисными инженерами при установке, обслуживании и ремонте электротехники;
— монтажниками при прокладке и расключении линий связи и электропередач;
— автоэлектриками при диагностике и ремонте автомобильной электрики;
Какой именно мультиметр нужен вам – можно понять, определившись измеряемыми параметрами и необходимой точностью прибора.