Индукционный регулятор напряжения — устройство, схемы, применение


Warning: Undefined array key 9 in /var/www/electro-scooterz.ru/data/www/electro-scooterz.ru/wp-content/plugins/fotorama/fotorama.php on line 73

Warning: Undefined array key 9 in /var/www/electro-scooterz.ru/data/www/electro-scooterz.ru/wp-content/plugins/fotorama/fotorama.php on line 74
Содержание

Как сделать стабилизатор тока для светодиодов самостоятельно

Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

На основе драйверов

Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

Сборка осуществляется по следующему алгоритму:

  1. Припаять проводники к среднему и крайнему выводу резистора.
  2. Перевести мультиметр в режим сопротивления.
  3. Замерить параметры резистора – они должны равняться 500 Ом.
  4. Проверить соединения на целостность и собрать цепь.

На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

Стабилизатор для автомобильной подсветки

Стабилизатор L7812

Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

  1. Выбор схемы под L7805 из даташита.
  2. Вырезать из текстолита нужный по размеру кусок.
  3. Наметить дорожки, делая насечки отверткой.
  4. Припаять элементы так, чтобы вход был слева, а выход – справа.
  5. Сделать корпус из термотрубки.

Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

Назначение и принцип работы

С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.

Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.

Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.

Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.

На основе симистора

Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:

Структурно прибор можно разделить на два блока:

  • Силовой ключ, в роли которого используется симистор.
  • Узел создания управляющих импульсов на основе симметричного динистора.

С помощью резисторов R1-R2 создан делитель напряжения

Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3

Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс

Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.

На базе тиристора

Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.

Принцип работы тиристорного прибора следующий:

  • Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
  • После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
  • При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.

Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.

Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.

Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП -85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП -85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Популярные статьи  Зарядное устройство для литиевых аккумуляторов

Это интересно: Разновидности автомобильных подъемников для автосервиса

Зарядное устройство на тиристоре своими руками

Существует множество электронных схем, в том числе и непростых, с полным набором регулировок и защиты, солидным количеством деталей, зачастую недешёвых. Но большинство автолюбителей отдаёт предпочтение простым зарядным устройствам на тиристоре, из нескольких недорогих компонентов, которые зачастую можно извлечь из отработавшей своё аппаратуры, например компьютера.

Выбор схемы и принцип её работы

Сначала стоит отметить главное достоинство предлагаемой схемы тиристорного зарядного устройства: доступность и малые финансовые затраты. Есть и иные преимущества при использовании в качестве главного компонента недорогого тиристора КУ202:

  1. Хороший зарядный ток до 10 А.
  2. Выдаваемая энергия – импульсного типа, что продлевает эксплуатационный ресурс заряжаемой батареи.
  3. Для сборки понадобятся широко распространённые недорогие детали, найти которые не составит труда.
  4. Схему тиристорного зарядного устройства для автомобильного аккумулятора просто повторить даже автолюбителю, малосведущему в радиотехнике, а опытному электронщику потребуется и вовсе не более часа, чтобы запустить устройство в эксплуатацию.

По принципу действия это фазоимпульсный регулятор мощности, выполненный на тиристоре и позволяющий изменять силу тока. Управляющий электрод КУ202 питает транзисторная цепь. Чтобы защитить схему тиристорного зарядного устройства для автомобильного аккумулятора от токовых скачков, используется диод VD2. Сопротивление R5 оказывает влияние на зарядный ток, значение которого, как известно, 1/1 от ёмкости АКБ. Для питания схемы понадобится трансформатор, уменьшающий сетевое U = 220 В до 18–22 В. Если в вашем распоряжении оказался трансформатор с большим напряжением на выходе, сопротивление R7 нужно увеличить ориентировочно до 2-х кОм (возможно, резистор придётся подбирать). Диоды выпрямительного моста и тиристор необходимо устанавливать на алюминиевые радиаторы, чтобы исключить перегрев деталей. При монтаже обычных элементов типа Д242–245 не забывайте под корпус подложить изоляционную шайбу.

Принципиальная схема тиристорного зарядного устройства для автомобильного аккумулятора выглядит следующим образом:

Индукционный регулятор напряжения - устройство, схемы, применение

Так как схема простая, в ней отсутствует электронная защита: её роль играет предохранитель, устанавливаемый на выходе. При зарядке батарей ёмкостью не более 60 А*ч хватит плавкой вставки номиналом 6,3 А. Установка последовательно подсоединяемого прибора – амперметра поможет контролировать процедуру зарядки. Ниже показана печатная плата, упрощающая сборку ЗУ:

Индукционный регулятор напряжения - устройство, схемы, применение

Перечень компонентов в схеме и подбор возможных аналогов

В схеме использован электролитический конденсатор, выдерживающий напряжение не менее 63 В. Мощность резисторов R1-R6 – 0,25 Вт, R7 – 2 Вт. Диоды в выпрямительном мосту пропускают ток до10 А и держат обратное U от 50 В. Такое же напряжение должен выдерживать импульсный диод VD2. Транзисторы VT1 и VT2: КТ3107, КТ502, КТ361 и КТ503, КТ315, КТ3102 соответственно.

Расчёт параметров трансформатора, тиристора и диодов

Одна из отрицательных сторон зарядки на тиристоре – низкий КПД, отчасти обусловленный вторичной обмоткой трансформатора, которая должна свободно пропускать ток, в три раза больший, чем потребляемая АКБ мощность. Как это исправить? Для этого можно тиристор переставить из обмотки II трансформатора в обмотку I, как это показано на схеме тиристорного зарядного устройства для АКБ:

Индукционный регулятор напряжения - устройство, схемы, применение

Вся разница этого ЗУ на тиристоре для автомобильных аккумуляторов заключается в подключении диодного моста и регулирующего тиристора в первичную обмотку трансформатора. Так как ток обмотки II приблизительно меньше зарядного в 10 раз, то тепловой энергии на диодах и тиристоре выделяется совсем мало: можно даже не использовать охлаждающие радиаторы (но это не относится к VD5-VD8).

Компоненты и их аналоги:

  • выпрямительный блок КЦ402,405 с любым индексом (А, Б, В);
  • стабилитрон типа КС524, КС518, КС522;
  • транзистор КТ117 с буквами от «Б» до «Г»;
  • диодный мост, стоящий на выходе, должен состоять из компонентов, рассчитанных на 10 А (Д242-247).

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Популярные статьи  Как выбрать устройство плавного пуска для электродвигателя

Регулятор мощности паяльника своими руками: проверенные рабочие схемы (6 шт)

Не всем нравится покупать неизвестно что. А некоторым приятнее сделать регулятор мощности паяльника своими руками, ведь это тоже опыт. Большинство схем собирается на симисторах и тиристорах, сейчас их найти проще чем транзисторы. Работать с ними тоже проще, так как они либо открыты, либо закрыты, что позволяет делать схемы проще.

Корпус подберите любой

Простые схемы на тиристоре

При выборе схемы регулятора мощности для паяльника важны две вещи: мощность и доступность деталей. Представленный ниже регулятор мощности паяльника собран на широко распространённых деталях, которые найти не проблема. Максимальный ток — 10 А, что более чем достаточно для выполнения работ любого рода и для паяльников мощностью до 100 Вт. Тиристор в данной схеме использован КУ202н

Обратите внимание на подключение моста. Есть много схем с ошибкой в подключении. Этот вариант рабочий

Проверен не раз

Этот вариант рабочий. Проверен не раз.

Схема регулятора температуры для паяльника на тиристоре

При сборке схемы тиристор обязательно ставим на радиатор, чем он больше тем лучше. Схема проста, но когда она включена, создаёт помехи. Радио рядом не послушаешь и, чтобы убрать помехи, параллельно нагрузке подключаем конденсатор на 200 пФ, а последовательно дроссель. Параметры дросселя подбираются в зависимости от регулируемой нагрузки, но так как паяльники обычно не более чем на 80-100 Вт, то и дроссель можно сделать на 100 Вт. Для этого понадобится ферритовое кольцо наружным диаметром 20 мм, на которое намотано около 100 витков проводом сечением 0,4 мм².

Ещё один недостаток переведённой выше схемы — паяльник ощутимо «зудит». Иногда с этим мириться можно, иногда нет. Для устранения этого явления можно подобрав параметры конденсатора C1 так чтобы при выставленном на максимум переменном резисторе, подключённая лампа еле-еле светилась.

На других элементах но тоже без помех

Приведенный выше регулятор можно использовать для любой нагрузки. Приведем еще один аналог,но с использованием другой элементной базы. Регулировать можно не только мощность/температуру паяльника, но и любую другую нагрузку с небольшой индуктивной составляющей.

Видоизмененная схема для регулирования мощности паяльника и любой другой нагрузки с устраненным эффектом пульсации

Пульсация тут есть, но ее частота высока и она не будет восприниматься нашим зрением. Так что можно использовать не только как диммер для паяльника, но и для регулирования света от обычной лампы накаливания. Нужен ли диодный мост для регулировки мощности нагрева паяльника? Он не помешает, но необходимости в нем нет.

На тиристоре с высокой чувствительностью

Данная схема позволяет плавно изменять температуру паяльника от 50% до 100%. Есть два индикатора — питания и мощности. Светодиод наличия питания горит всегда во включенном состоянии, но при 75% мощности свечение более яркое. Индикатор мощности меняет интенсивность свечения в зависимости от режима работы.

Регулятор мощности для паяльника без помех

Чтобы регулятор поместился в корпус от зарядного устройства мобильного телефона, сопротивления используют СМД типа (1206). Все резисторы установлены на плате, кроме R 10. Некоторые могут быть составными (из последовательно соединенных резисторов собираем нужный номинал).

Для нормальной работы схемы требуется чувствительный тиристор (с малым током управления) и низким током удержания состояния (порядка 1 мА). Например, КТ503 (рассчитан на напряжение 400 В, Ток управления 1 мА). Остальная элементная база указана на схеме.

Если собрали, но напряжение не регулируется

Если собранный регулятор ничего не регулирует — не меняется температура паяльника — дело в тиристоре. Схема, вроде, работает, а ничего не происходит. Причина — тиристор с низкой чувствительностью. Токи, которые протекают в схеме, недостаточны для открытия. В таком случае стоит поставить аналог с более высокой чувствительностью (токи управления более низкие).

Один из вариантов корпуса, в который можно спрятать самодельный регулятор мощности для паяльника

Еще может регулятор работать, но паяльник начинает «зудеть». Решается такая проблема установкой дросселя на выходе (перед паяльником). Емкость надо подбирать — зависит от паяльника.  Второй вариант решения — аналоговая схема управления, а это уже другая схема.

Ну, и при проблемах с работой ищите либо неисправные детали, либо неправильно подобранные компоненты. Обычно проблема в этом.

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://oldoctober.com/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Описание конструкции >>> Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как проверить тиристор от отдельного источника управляющего напряжения?

Вернемся к первой схеме проверки тиристора, от источника постоянного напряжения, но несколько видоизменив ее.

Смотрим рисунок №3.

4. Урок №4 — «Тиристор в цепи переменного тока. Импульсно — фазовый метод»

5. Урок №5 — «Тиристорный регулятор в зарядном устройстве»

В этих уроках, в простой и удобной форме, излагаются основные сведения по полупроводниковым приборам: динисторам и тиристорам.

Что такое динистор и тиристор, выды тиристоров и их вольт — амперные характеристики, работа динисторов и тиристоров в цепях постоянного и переменного тока, транзисторные аналоги динистора и тиристора.

А так же: способы управления электрической мощностью переменного тока, фазовый и импульсно-фазовый методы.

Каждый теоретический материал подтверждается практическими примерами. Приводятся действующие схемы: релаксационного генератора и фиксированной кнопки, реализованных на динисторе и его транзисторном аналоге; схема защиты от короткого замыкания в стабилизаторе напряжения и многое другое.

Особенно интересна для автолюбителей схема зарядного устройства для аккумулятора на 12 вольт на тиристорах. Приводятся эпюры формы напряжения в рабочих точках действующих устройств управления переменным напряжением при фазовом и импульсно-фазовом методах.

Чтобы получить эти бесплатные уроки подпишитесь на рассылку, заполните форму подписки и нажмите кнопку «Подписаться».

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

Популярные статьи  Углекислотный огнетушитель - устройство, принцип действия, правила использования

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод. Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем. Освежить память о p-n переходе можно .

Принцип работы

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным. Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику. К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора. При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2). После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3). В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние. При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

Напряжение включенияПрямое напряжениеОбратное напряжение

допустимое напряжениеМаксимально допустимый прямой токОбратный токМаксимальный ток управления электродаВремя задержки включения/выключенияМаксимально допустимая рассеиваемая мощность

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

Минимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.

Половинная мощность

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Мощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) – незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа – создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.

Переключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом

Принцип работы симисторного регулятора мощности

Их применяют только в небольших электроприборах из-за того, что они крайне чувствительны к электромагнитным волнам, выделяют много тепла и неспособны работать на высоких частотах переменного тока. Их не используют в крупных промышленных агрегатах.

Индукционный регулятор напряжения - устройство, схемы, применение

Прибор прост в изготовлении, не требует больших денежных затрат и обладает долгим сроком эксплуатации. Его можно легко применять в сферах и приборах, где описанные выше недостатки не играют большой роли.

Индукционный регулятор напряжения - устройство, схемы, применение

Многие не знают, для чего нужны симисторные регуляторы мощности. Но они присутствуют в большинстве домашних бытовых приборах, таких как: фен, пылесос, электроинструменты и нагревательные приборы.

Индукционный регулятор напряжения - устройство, схемы, применение

Регулятор мощности позволяет пропускать электрический сигнал, с частотой заданной пользователем.

Индукционный регулятор напряжения - устройство, схемы, применение

Оцените статью