История
Первые заготовки цепей являются последовательными в промышленное развитие телеграфа , в телефоне и радио в начале XX — го века .
В 1903 году в Лондоне , Альберт Hanson , родом из Берлина , подал патент на систему проводящих проводов приклеен к парафиновой бумаге , для улучшения телефонных станций того времени. Хотя это еще не была настоящая печатная схема, это уже была сборка проводников на изоляционном материале. Этот изобретатель заложил основу для современной двусторонней печатной схемы, добавив отверстия в изоляции, чтобы обеспечить электрическое соединение между проводами с обеих сторон. Он также упомянул возможность формирования проводников на поверхности путем электроосаждения или использования материала на основе металлического порошка.
Американца Томаса Эдисона интересовала проблема нанесения проводящих дорожек на изоляционную бумагу. В своем ответе основателю Sprague Electric Co. он предложил несколько идей, таких как химическое осаждение металла или покрытие сусальным золотом клейкого материала.
В году британец Артур Берри запатентовал процесс изготовления схем для электрического радиатора, который заключался в нанесении слоя меди с последующим его травлением. Американец Макс Шуп в 1918 году подал патент на процесс теплового проецирования металла через маску. В году Чарльз Дукас запатентовал процесс гальваники меди, что позволило создавать токопроводящие дорожки с обеих сторон диэлектрика . Дукас также описал многослойные схемы и способы электрического соединения слоев друг с другом. Француз Сезар Паролини в 1927 году подал патент на печать клейких рисунков на диэлектрике и нанесение медного порошка на поверхность, реализовав идею Эдисона, связав процесс Дукаса.
Печатная схема разработана на базе микроконтроллера STM32MX фирмы Titoma.
Обозначения радиодеталей на принципиальных схемах
УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.
Например, в США обозначение резисторов отличается от СНГ и Европы.
Из-за этого меняется восприятие схемы.
Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.
УГО
Название
Биполярный n-p-n транзистор
Биполярный p-n-p транзистор
Однопереходный транзистор с n базой
Однопереходный транзистор с p базой
Обмотка реле
Заземление
Диод
Диодный мост
Диод Шотки
Двуханодный стабилитрон
Двунаправленный стабилитрон
Обращенный диод
Стабилитрон
Туннельный диод
Варикап
Катушка индуктивности
Катушка индуктивности с подстраиваемым сердечником
Катушка индуктивности с сердечником
Классический трансформатор
Обмотка
Регулируемый сердечник
Электролитический конденсатор
Неполярный конденсатор
Опорный конденсатор
Переменный конденсатор
Подстроечный конденсатор
Двухпозиционный переключатель
Герконовый переключатель
Размыкающий переключатель
Замыкающий переключатель
Полевой транзистор с каналом n типа
Полевой транзистор с каналом p типа
Быстродействующий плавкий предохранитель
Инерционно-плавкий предохранитель
Плавкий предохранитель
Пробивной предохранитель
Термическая катушка
Тугоплавкий предохранитель
Выключатель-предохранитель
Разрядник
Разрядник двухэлектродный
Разрядник электрохимический
Разрядник ионный
Разрядник роговой
Разрядник шаровой
Разрядник симметричный
Разрядник трехэлектродный
Разрядник трубчатый
Разрядник угольный
Разрядник вакуумный
Разрядник вентильный
Гнездо телефонное
Разъем
Разъем
Переменный резистор
Подстроечный резистор
Резистор
Резистор 0,125 Вт
Резистор 0,25 Вт
Резистор 0,5 Вт
Резистор 1 Вт
Резистор 2 Вт
Резистор 5 Вт
Динистор проводящий в обратном направлении
Динистор запираемый в обратном направлении
Диодный симметричный тиристор
Тетродный тиристор
Тиристор с управлением по катоду
Тиристор с управлением по аноду
Тиристор с управлением по катоду
Тиристор триодный симметричный
Запираемый тиристор с управлением по аноду
Запираемый тиристор с управлением по катоду
Диодная оптопара
Фотодиод
Фототиристор
Фототранзистор
Резистивная оптопара
Светодиод
Тиристорная оптопара
Какими буквами обозначаются радиодетали на схемах
Буквенное обозначение на схеме | Радиодеталь |
R | Резисторы (переменный, подстроечный и постоянный) |
VD | Диоды (стабилитрон, мост, варикап и т.д.) |
C | Конденсаторы (неполярный, электролитический, переменный и т.д.) |
L | Катушки и дроссели |
SA | Переключатели |
FU | Предохранители |
FV | Разрядники |
X | Разъемы |
K | Реле |
VS | Тиристоры (тетродные, динисторы, фототиристоры и т.п.) |
VT | Транзисторы (биполярные, полевые) |
HL | Светодиоды |
U | Оптопары |
Post Views:
3 824
Программы для разводки печатных плат
программы для радиолюбителей
На данный момент существует множество программ и онлайн сервисов для разводки печатных плат. Когда в интернете находишь интересную электронную схему то сразу хочется её собрать своими руками, но не всегда к ней прилагается рисунок печатной платы. Когда-то давно, дорожки рисовали лаком на фольгированном текстолите. Сейчас радиолюбители не рисуют дорожки от руки, а распечатывают с помощью лазерного принтера — эта технология называется ЛУТ. Можно отдать схему специалистам, которые за определённую сумму все сделают, но лучше освоить одну из программ и сделать все своими руками.
Я подобрал несколько программ для разводки (трассировки) печатной платы.
Sprint-Layout
Самая популярная программа среди радиолюбителей, почти все новички начинали именно с неё. Простой и понятный интерфейс, существует русифицированная версия. Спринт лайт имеет большую базу электронных компонентов (макросов), которые можно скачать в интернете. Огромное количество обучающих видеороликов на Ютубе, помогут освоить весь интерфейс и научат рисовать печатные платы. Программа является условно — бесплатной.
easyeda
Китайский онлайн сервис с большими возможностями. В Китае студенты создают проекты с помощью данного сервиса и его преподают в некоторых учебных заведениях. Основное удобство заключается в том что созданные проекты можно редактировать на любом компьютере с доступом в интернет, необходимо только пройти простую регистрацию для создания аккаунта. Easyeda имеет огромную базу электронных компонентов которые постоянно обновляются и добавляются самими пользователями. Данный сервис имеет функцию автоматической трассировки печатной платы и симуляцию электронных схем. Интерфейс интуитивно понятный с поддержкой русского языка. После того как печатная плата разведена на дорожки её можно заказать в этом сервисе, причем промышленного качества, а можно и не заказывать, а распечатать на принтере и сделать самому. Также можно открыть доступ к проекту и делится им с другими пользователями или совместно создавать один проект.
ZenitPCB
Простая и бесплатная программа для рисования принципиальных схем с возможностью трассировки. Минусом является ограничение контактных площадок в 800 штук. База элементов около 1000.
DesignSpark PCB
Мощная программа с возможностью автоматической трассировки печатных плат. Подходит как для новичков так и для профессионалов.
DesignSpark PCB это бесплатная программа со встроенными специализированными калькуляторами для разных расчётов облегчающими подбор компонентов. На официальном сайте можно скачать библиотеку готовых печатных плат. Единственный минус это отсутствие русского языка в интерфейсе.
Я пользуюсь двумя;
Программа Sprint-Layout
Онлайн сервис easyeda.com
Для моей деятельности, на данном этапе моего развития, этого вполне хватает. В освоении перечисленных программ, справится любой начинающий радиолюбитель.
Дальше »
Схема мощного тиристорного регулятора напряжения
Cхемы электронных устройств
С помощью этого устройства можно регулировать напряжения от несколько десятков вольт до 220 В, при активной нагрузке.
Тринисторы VS1 и VS2 подключены параллельно между собой, на встречу друг к другу и последовательно к нагрузке. При включении тринисторы закрыты, через R5 происходит зарядка конденсаторов C1, C2. Конденсаторы C1, C2 и переменный резистор R5 образуют фазосдвигающую цепочку.
Динисторы VS3 и VS4 образуют импульсы, с помощью которых происходит управление тринисторами.
В тот момент когда конденсаторы зарядятся напряжением равным напряжению открытия динистора, произойдет скачок напряжения который включит тринистор и через нагрузку потечет ток. В начале отрицательного полупериода напряжения сети, происходит отключение данного тринистора и происходит новый цикл зарядки конденсаторов, но уже в обратной полярности. Происходит открытие другого тринистера и динистора.
Используемые детали
- R1, R2, R3, R4 — 51 Ом
- R5 — 270 кОм
- VS1 — КУ202Н
- VS2 — КУ202Н
- VS3 — КН102А
- VS4 — КН102Н
- C1 — 0,25 мкФ
- C2 — 0,25 мкФ
Установив VS1 и VS2 на радиаторы, можно увеличить нагрузку до 1,5 кВт.
Конденсаторы необходимо использовать рассчитанные на напряжение не менее 300 В.
В схеме можно использовать динисторы КН102Б но при этом нужно уменьшить емкость конденсаторов до 0,2 мкФ или КН102В — ёмкость уменьшить до 0,15 мкФ. Переменный резистор типа СП2-2-1
Дальше »
Технология ручного способа нанесения дорожек печатной платы
Подготовка шаблона
Бумага, на которой рисуется разводка печатной платы обычно тонкая и для более точного сверления отверстий, особенно в случае использования ручной самодельной дрели, чтобы сверло не вело в сторону, требуется сделать ее более плотной. Для этого нужно приклеить рисунок печатной платы на более плотную бумагу или тонкий плотный картон с помощью любого клея, например ПВА или Момент.
Далее плотная бумага вырезается по контуру приклеенного рисунка и шаблон для сверления готов.
Вырезание заготовки
Подбирается заготовка фольгированного стеклотекстолита подходящего размера, шаблон печатной платы прикладывается к заготовке и обрисовывается по периметру маркером, мягким простым карандашом или нанесением риски острым предметом.
Далее стеклотекстолит режется по нанесенным линиям с помощью ножниц по металлу или выпиливается ножовкой по металлу. Ножницами отрезать быстрее, и нет пыли. Но надо учесть, что при резке ножницами стеклотекстолит сильно изгибается, что несколько ухудшает прочность приклейки медной фольги и если потребуется перепайка элементов, то дорожки могут отслоиться. Поэтому если плата большая и с очень тонкими дорожками, то лучше отрезать с помощью ножовки по металлу.
Приклеивается шаблон рисунка печатной платы на вырезанную заготовку с помощью клея Момент, четыре капли которого наносятся по углам заготовки.
Так как клей схватывается всего за несколько минут, то сразу можно приступать к сверлению отверстий под радиодетали.
Подготовка чертежей печатной платы.
Вручную удобнее всего выполнять чертеж печатной платы в масштабе 1:1 на бумаге от самописцев ( имеет клетку со стороной 2.5 мм, в “шаге” микросхем), если таковой нет, то можно “отксерить” школьную бумагу “в клеточку” с уменьшением в 2 раза, в самом крайнем случае можно использовать обычную миллиметровку. Дорожки со стороны пайки нужно рисовать сплошными линиями, а дорожки со стороны деталей ( в случае двухстороннего монтажа) рисовать пунктирными линиями. Необходимо отметить, что располагаемые элементы должны быть в зеркальном отражении. Центры ножек элементов отмечаются точками, вокруг которых необходимо нарисовать паечную площадку
Для последующих действий, очень важно, какого размера Вы выбираете установочные площадки для элементов (обидно, когда при рисовании платы “в живую” или дорожка между площадками не проходит, или после пайки элементы выпадают вместе с площадками). Ширину дорожек следует выбирать исходя из того, чем вы будете рисовать плату, при использовании стеклянных рейсфедеров примерно 1.5 мм
После того как рисунок готов, нужно приложить чертеж к светящейся поверхости ( например стекло окна) обратной стороной к себе и обвести пунктирные линии. Так Вы получите рисунок со стороны установки деталей. Далее необходимо вырезать чертеж листа бумаги, но с учетом “крылышек” для крепежа с каждой стороны (около 15 мм).
При повороте ключа зажигания ничего не происходит.
Электрика автомобиля
Столкнулся с такой проблемой — автомобиль «zaz sens» перестал заводиться. Вставляю ключ зажигания, поворачиваю до первого щелчка вроде все как обычно, начинает качать бензонасос. Насос перестает качать, я поворачиваю ключ зажигания, чтобы завести автомобиль и в этот момент все гаснет и ничего не происходит, как будто автомобиль выключается. При этом приборная панель, габаритные огни и даже аварийка не моргает и ничего не работает. Если включить свет в салоне, то он светит очень тускло, едва заметно. При следующих попытках завести, уже и бензонасос не качает. Если подождать пару часов, то повторяется та же ситуация, качает насос при попытке запустить стартер — все отключается и тишина.
Как я решил данную проблему.
Первое на что я подумал, это плохой контакт на массе. Я взял провод и подсоединил минус от аккумулятора напрямую к кузову, при этом клеммы не отсоединял. Попробовал завести ничего не изменилось.
Второе что я сделал — это проверил все предохранители, они все оказались исправные.
На следующей день я решил зарядить аккумулятор, снял клеммы и поставил на зарядку. Полностью зарядил, не помогло.
Решил почистить клеммы, стал опять откручивать и случайно заметил что гайка на плюсовой клемме аккумулятора — очень слабо закручена, к которой присоединяется тонкий провод идущий от блока управления. Я открутил, все почистил и закрутил потуже. И все завелось, как обычно, даже ещё лучше.
Надеюсь данная информация кому-нибудь пригодится. Всем удачи!
Дальше »
Подготовка печатной платы к монтажу радиодеталей
Следующий шаг, это подготовка печатной платы к монтажу радиоэлементов. После снятия с платы краски, дорожки нужно обработать круговыми движениями мелкой наждачной бумагой. Увлекаться не нужно, потому что медные дорожки тонкие и можно легко их сточить. Достаточно всего нескольких проходов абразивом со слабым прижимом.
Далее токоведущие дорожки и контактные площадки печатной платы покрываются и лудятся мягким припоем эклектрическим паяльником. чтобы отверстия на печатной плате, не затягивались припоем, его на жало паяльника нужно брать немного.
После завершения изготовления печатной платы, останется только вставить в предназначенные позиции радиодетали и запаять их выводы к площадкам. Перед пайкой ножки деталей нужно обязательно смочить спирто-канифольным флюсом. Если ножки радиодеталей длинные, то их нужно перед пайкой обрезать бокорезами до длины выступания над поверхностью печатной платы 1-1,5 мм. После окончания монтажа деталей нужно удалить остатки канифоли с помощью любого растворителя — спирта, уайт-спирта или ацетона. Они все успешно растворяют канифоль.
Подробно о технологии пайки на примерах пайки деталей, о марках припоев и флюсов, устройстве и ремонте паяльников Вы можете узнать из цикла статей раздела «Как паять паяльником».
На воплощение этой простой схемы емкостного реле от разводки дорожек для изготовления печатной платы до создания действующего образца ушло не более пяти часов, гораздо меньше, чем на верстку этой страницы.
Виды печатных плат
Основания для изготовления электроники разделяются на несколько видов. Они отличаются по конструкции, характеристикам, предназначению. Разновидности плат:
1. Односторонние — конструкции представляющие собой диэлектрические пластинки, на которые с одной стороны нанесён токопроводящий рисунок. Для соединения отдельных контактов на верхнем диэлектрическом слое закрепляются металлические перемычки. Односторонние основания используются при изготовлении недорогой бытовой техники. Связано это с их малой надёжностью, недолговечностью, хрупкой конструкцией.
2. Двухсторонние — на диэлектрическим слое с двух сторон наносятся токопроводящие рисунки, что позволяет устанавливать на основание большее количество электрических элементов, расширить функционал, технические характеристики платы. Отверстия имеют металлизированные вставки. Благодаря им прочность скрепления отдельных деталей с основанием становится надёжнее. Двухсторонние
пластинки считаются наиболее популярными при изготовлении бытовой электроники, компьютеров.
3. Однослойные — элементарная конструкция, состоящая из одной пластинки, прослойки покрытой металлом.
4. Многослойные — сложные конструкции, которые используются при изготовлении сложных приборов, механизмов. Несколько слоёв, расположенных в определённой последовательности, позволяют надёжно закреплять основные компоненты. Количество слоёв выбирается зависимо от требуемых характеристик. Максимальное количество — 40. У многослойных оснований есть ряд недостатков. Это сложности во время изготовления, сложный процесс починки, дороговизна расходных материалов.
Будет интересно Как измерить аккумуляторную батарею, мультимер в измерении емкости аккумулятора
5. Гибкие — могут быть односторонними, двухсторонними, иметь несколько слоев. Изготавливаются на гибком основании. Предназначены для соединения отдельных элементов электрического оборудования. Могут заменять собой кабеля.
6. Гибко-жесткие — конструкция представляет собой шлейф, на котором в определённых местах закрепляются жесткие пластинки, с нанесёнными на них токопроводящими рисунками. Используются для соединение жестких плат между собой. Обеспечивают надёжную связку.
7. Жёсткие — плитки, выполненные из жёстких слоев, которые не дают платам деформироваться. Простой пример жёсткого основания — материнская плата, устанавливаемая в компьютерах.
8. Теплопроводные — другие названия этих пластинок ВЧ, СВЧ. Во время изготовления основания используется керамика, чтобы оно выдерживало воздействие высоких температур. Дополнительно керамика повышает жёсткость конструкции.
Зависимо от вида плат изменяются их характеристики, внешний вид, размер, возможности.
Я удивлялся, почему бы не купить готовое оборудование. Но приходится смириться. В банках требования к безопасности на порядок выше. Введенный с панели пароль должен сразу же фиксироваться на сервер безопасности банка. Любое действие либо его отсутствие должны быть зафиксированы. Потому, весь техпроцесс проектируется с нуля самим банком. Впрочем, ничего удивительного.
Под терминалы, настенные кодовые панели и прочие элементы разрабатывается индивидуальный проект, заказываются электронные элементы. После их проработки следует обращение к разработчикам печатных плат, которые прорабатывают проект и размещают все элементы на проработанном диэлектрике.
Готово. Выглядит просто, на самом деле проработка подобного проекта и полная его реализация может занять много времени. Впрочем, изготовление печатных плат при налаженном техпроцессе происходит быстро. Большая часть времени — создание проекта, спецификаций и модификации на основе результатов работы опытного образца.
Точнее сказать довольно трудно. В данной сфере специалистом не являюсь. Но тема довольно интересная и стоило бы посвятить ей чуть больше внимания. Спасибо, надеюсь, вам было интересно ознакомиться. На сайте выше вы сможете найти гораздо больше информации по данному вопросу.
Исторический путь печатной платы
Электронные печатные платы отметили начало пути становления и развития системами электрических соединений, разработанных в середине XIX века.
Металлические полосы (стержни) изначально применялись для подключения громоздких электрических компонентов, смонтированных на древесном основании.
Постепенно металлические полосы вытеснили проводники с винтовыми клеммными колодками. Деревянную основу тоже модернизировали, отдав предпочтение металлу.
КЛЕММНАЯ
Примерно таким выглядел прототип современного производства ПП. Подобные решения конструирования применялись в середине XIX века
Практика применения компактных, малых по размерам электронных деталей, требовала уникального решения по базовой основе. И вот, в 1925 году некто Чарльз Дюкасс (США) нашёл такое решение.
Американский инженер предложил уникальный способ организации электрических связей на изолированной пластине. Он использовал электропроводящие чернила и трафарет для переноса принципиальной схемы на пластину.
Чуть позже — в 1943 году, англичанин Пол Эйслер также запатентовал изобретение травления токопроводящих контуров на медной фольге. Инженер использовал пластину-изолятор, ламинированную фольгированным материалом.
Однако активное применение технологии Эйслера отметилось лишь в период 1950-60 годов, когда изобрели и освоили производство микроэлектронных компонентов — транзисторов.
Технологию изготовления сквозных отверстий на многослойных печатных платах запатентовала фирма Hazeltyne (США) в 1961 году.
Так, благодаря увеличению плотности электронных деталей и тесному расположению связывающих линий, открылась новая эра дизайна печатных плат.
Номиналы радиодеталей
Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.
К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.
Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.
Рассмотрим на схеме два конденсатора.
В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.
Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.
Печатные платы при помощи лазерного принтера.
Всё большую популярность у радиолюбителей приобретает способ изготовления единичных печатных плат с переносом рисунка с распечатки на лазерном принтере. Печатать лучше всего на тонкую мелованную бумагу – в ней меньше ворс, хороший результат получается на листах журнала “Стерео&Video”, а также подложках “самоклеек” и термобумаге для факсов (сторону подобрать экспериментально). В лазерных принтерах следует включить режим максимальной подачи тонера (отключить “экономичный” режим, если он был включен, контраст – на максимум и т.д.), а также использовать тракт с минимальным изгибом бумаги (такая опция есть в старых моделях HP LJ 2, LJ4 и др.). Рисунок платы должен быть “отзеркален”, такая опция имеется в меню печати многих графических программ, например Corel Draw, Corel Photo Paint, а при печати из программ, не умеющих “зеркалить”, необходимо применять вывод на Postscript принтеры, опция отзеркаливания у которых имеется в драйвере. Вместо вывода на лазерном принтере можно использовать ксерокопирование, но также в режиме с максимальной контрастностью и на термобумагу от факсов. При изготовлении двухслойных печатных плат для уменьшения термоусадки бумаги последнюю рекомендуется перед печатью изображения “прогнать” через принтер вхолостую (без печати рисунка). Кроме того, обе стороны должны быть на одном листе во избежание сильного рассогласования из-за разной термоусадки бумаги. Обезжиренная плата ложится медью вверх на ровную поверхность, сверху полученный отпечаток тонером вниз. Этот “бутерброд” со стороны бумаги прижимается утюгом (секунд на 20 – 30), разогретым до температуры глажения крепдешина (спросите у дам). Утюг должен расплавлять изображение, сделанное лазерным принтером, не сразу. То есть тонер при такой температуре должен стать из твердого вязким, но не жидким. Когда плата остынет, её нужно опустить в теплую воду, подержать там несколько минут. Как бумага раскиснет (будет видно), всё легко сдерется, остальное просто скатать пальцем. Вместо воды удалить бумагу можно серной кислотой. Если дорожки смазанные, вы неаккуратно снимали утюг или ставили холодный груз. Если дорожки где-то отсутствуют, утюг слишком холодный. Если дорожки стали широкими, утюг слишком горячий, или слишком долго грели плату. Если плата двухсторонняя, то сначала на просвет совмещаются бумажные распечатки обеих сторон, в любых свободных противоположных местах иголкой прокалываются два технологических отверстия, первая сторона платы “гладится” как обычно, потом сверлится по технологическим отверстиям тонким сверлом, а с другой стороны по ним же на просвет совмещается с бумажной распечаткой другой стороны. Травить можно и хлорным железом (для ускорения немного подогреть), и солянкой с гидропиритом. Всё это применялось даже на гетинаксе, никаких отслоений дорожек нет, нормально выполняются дорожки шириной до 0,8 мм, а при некотором опыте и до 0,5 мм. После травления тонер удаляется ацетоном, смывкой лака для ногтей или аэрозолем Flux Off. Сверлится, обрезается и так далее, как обычно…
- https://zetsila.ru/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F-%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%BD%D0%B0%D1%8F-%D0%BF%D0%BB%D0%B0%D1%82%D0%B0/
- https://www.radioingener.ru/pechaynye_platy/
- https://tayga.info/147682
- https://SdelaySam-SvoimiRukami.ru/3992-prostoy-sposob-izgotovleniya-pechatnyh-plat-ne-lut.html
- https://cxem.net/master/11.php
- http://www.pselectro.ru/p/bazovye-materialy-primenauseesa-pri-izgotovlenii-pecatnyh-plat-77367
Следующая
ИнформацияМультиметр: какой лучше выбрать, рейтинг моделей для профессионального и домашнего использования
Усилители на TDA с небольшим описанием
Подборка усилителей на микросхемах серии TDA. Серия TDA знаменита своими микросхемами, которые позволяют собрать усилители любого класса и любой сложности.
Усилитель на TDA2005 или TDA2004
Усилитель звука выполнен по мостовой схеме. Открыть в полном размере
В нем предусмотрена защита выходного каскада от короткого замыкания, термозащита (отключение при перегреве в результате больших нагрузок), защита от скачков напряжения до 40 В, а также защита от отключения общего провода.
В этом усилителе присутствует защита оконечного каскада от замыкания. А также предусмотрена термозащита, которая отключает усилитель при перегреве во время больших нагрузок. Еще есть защита от скачков до 40 вольт, и защита от случайного отсоединения общего провода.
Назначение выводов
Номер вывода | Назначение |
1 | Неинвертирующий вход 1 |
2 | Инвертирующий вход 1 |
3 | Вывод фильтра |
4 | Инвертирующий вход 2 |
5 | Неинвертирующий вход 2 |
6 | Общий |
7 | Вход обратной связи 2 |
8 | Выход 2 |
9 | Напряжение питания |
10 | Выход 1 |
11 | Вход обратной связи |
Характеристики микросхемы
Параметр | Значение |
Uпит | 8 — 18 В |
Iвых | 1 А |
Iпокоя | 50 мА |
Pвых | 20 Вт |
Rвх | 100 кОм |
Коэффициент усиления | 48 дБ |
Полоса частот | 20 — 20 000 Гц |
Коэффициент гармоник | 0,5 |
Rнагр | 4 Ом |
Мощный УНЧ на TDA8924
Высокая эффективность усилителя (около 90 %) и широкий диапазон рабочего напряжения (+-30 В).
У этой микросхемы много преимуществ:
- Низкий ток потребления;
- Малые искажениях;
- Постоянный коэффициент усиления порядка 28 дБ;
- Выходная мощность стерео 2х50 Вт;
- Хорошее подавление пульсаций;
- Есть возможность внешней синхронизации;
- Отсутствие помех при включении/выключении;
- Защита от короткого замыкания;
- Можно ограничить выходную мощность;
- Защита от перегрева;
- И защита от электростатики на всех выводах.
Характеристики микросхемы
Параметр | Обозначение | Минимальное | Среднее | Максимальное | Единица измерения |
Напряжение питания | Uпит | +-12,5 | +-24 | +-30 | В |
Ток потребления в холостом режиме | Iпотр | — | 100 | — | мА |
КПД | — | — | 83 | — | % |
Выходная мощность | — | — | 120 | — | Вт |
Выходная мощность в режиме моста | — | — | 240 | — | Вт |
Двухканальный усилитель звука на TDA8920
У этой схемы высокая эффективность (порядка 90%) и широкий диапазон напряжения (около +-30 В).
Преимущества схемы
Схема простая и ее основой служит микросхема TDA8920.
Эта микросхема обладает следующими особенностями:
- Низкий ток потребления;
- Небольшие искажения сигнала;
- Постоянный коэффициент усиления схемы УНЧ с этой микросхемой будет равен 30 дБ;
- Выходная мощность 2х50 Вт;
- Можно сделать ограничитель на выходную мощность;
- Хорошее подавление пульсаций;
- Возможность включения микросхемы в режиме стерео или в мостовом режиме;
- Дифференциальные аудиовходы;
- Защита от замыкания;
- Защита от высоких температур во время работы;
- Обладает защитой от электростатических разрядов на всех выводах.
Характеристики микросхемы TDA8920
Параметр | Обозначение | Минимум | Среднее | Максимальное | Единица измерения |
Напряжение питания | Uпит | +-15 | +-25 | +-30 | В |
Ток потребления в холостом режиме | Iпотр | — | 50 | 60 | мА |
КПД | — | 85 | 90 | — | % |
Выходная мощность | — | — | 35 | — | Вт |
Коэффициент усиления (замкнутый контур) | Кусил | 29 | 30 | 31 | Дб |
Входное сопротивление | Rвх | 80 | 120 | — | кОм |
Напряжение шума | Uшума | — | 100 | — | мкВ |
Разделение каналов | — | — | 50 | — | дБ |
Post Views:
2 201
Принципы выбора готовых плат: цены и производители
Магазины радиоэлектроники предлагают покупателям широкий ассортимент печатных плат для изготовления электроники
Советуем изучить — Основные режимы работы электродвигателя в системе электропривода
При покупке важно учитывать некоторые факторы:. 1. Размеры основания
Зависит от количества элементов, устанавливаемых на него
Размеры основания. Зависит от количества элементов, устанавливаемых на него
1. Размеры основания. Зависит от количества элементов, устанавливаемых на него.
2. Количество слоёв, используемых при изготовлении плитки.
3. Наличие металлических вставок на отверстиях для закрепления радиоэлементов.
4. Двухсторонний или односторонний рисунок.
5. Гибкое или жёсткое основание.
Платы нужны для всех устройств. Ниже представлены усредненная стоимость и производители на примере материнских плат для компьютера:
Нет смысла переплачивать за известный бренд, если собрать нужно простой электроприбор. Однако самая дешёвая плата быстро выйдет из строя и может привести к появлению возгорания. При выборе нужно проверять работоспособность электрических дорожек, целостность конструкции.
Исторический путь печатной платы
Электронные печатные платы отметили начало пути становления и развития системами электрических соединений, разработанных в середине XIX века.
Металлические полосы (стержни) изначально применялись для подключения громоздких электрических компонентов, смонтированных на древесном основании.
Постепенно металлические полосы вытеснили проводники с винтовыми клеммными колодками. Деревянную основу тоже модернизировали, отдав предпочтение металлу.
КЛЕММНАЯ
Примерно таким выглядел прототип современного производства ПП. Подобные решения конструирования применялись в середине XIX века
Практика применения компактных, малых по размерам электронных деталей, требовала уникального решения по базовой основе. И вот, в 1925 году некто Чарльз Дюкасс (США) нашёл такое решение.
Американский инженер предложил уникальный способ организации электрических связей на изолированной пластине. Он использовал электропроводящие чернила и трафарет для переноса принципиальной схемы на пластину.
Чуть позже — в 1943 году, англичанин Пол Эйслер также запатентовал изобретение травления токопроводящих контуров на медной фольге. Инженер использовал пластину-изолятор, ламинированную фольгированным материалом.
Однако активное применение технологии Эйслера отметилось лишь в период 1950-60 годов, когда изобрели и освоили производство микроэлектронных компонентов — транзисторов.
Технологию изготовления сквозных отверстий на многослойных печатных платах запатентовала фирма Hazeltyne (США) в 1961 году.
Так, благодаря увеличению плотности электронных деталей и тесному расположению связывающих линий, открылась новая эра дизайна печатных плат.
Рецепты травильных растворов
Травильный раствор из перекиси водорода и лимонной кислоты
Ингредиенты:
- перекись водорода (3 %);
- лимонная кислота;
- поваренная соль;
- теплая вода (100 мл).
Watch this video on YouTube
Травильного раствора объемом 100 миллилитров достаточно для удаления фольги из меди (толщина 35 мкм) с площади пластины размером 100 сантиметров квадратных. Приготовленный раствор нельзя хранить. Вместо лимонной кислоты можно использовать уксусную, однако сушить плату придется на улице из-за неприятного запаха.
Достоинства раствора — дешевизна, легкодоступность ингредиентов, высокая скорость, безопасность. Травление можно проводить при комнатной температуре.
Травильный раствор на основе хлорного железа
Раствор на основе хлорного железа не требователен к температуре. Время травления быстрое. Однако скорость убывает по мере расхода хлорного железа в жидкости.
Для приготовления понадобятся: 200 миллилитров воды и 150 грамм хлорного железа в порошкообразном виде. Компоненты перемешивают до полного растворения.
Травильный раствор на основе перекиси водорода и соляной кислоты
Травильный раствор отличается высокой скоростью процедуры и доступностью. Гидроперит или перекись водорода можно приобрести в аптеке.
Для приготовления в соляную кислоту (помешивая ее) тонкой струей вливают раствор перекиси водорода (3 процента). При процедуре травления следует соблюдать меры безопасности, так как соляная кислота разъедает руки и портит другие предметы. По этой причине раствор не рекомендуют применять в домашних условиях.
Травильный раствор на основе медного купороса
Травильный раствор на основе медного купороса используют редко, так как процедура отличается сложностью. К тому же, медный купорос — это ядохимикат, который применяют в сельском хозяйстве для уничтожения вредителей. Продается компонент в торговых точках для садоводов и огородников.
Способ приготовления: медный купорос (⅓ часть) перемешивают с поваренной солью (⅔ части). В смесь вливают 1,5 стакана горячей воды, чтобы соль растворилась.
Время процедуры травления с медным купоросом — около четырех часов. Необходимая температура — от 50 до 80 градусов по Цельсию. Во время травления раствор необходимо постоянно менять.
Способ изготовления печатной платы в домашних условиях пригодится новичкам в сфере электроники. Перед профессиональной работой можно приобрести необходимые навыки дома. Количество методов разнообразно, что повлияет на успех задуманного.
Что такое генератор водорода и как его сделать своими руками
Как сделать металлоискатель своими руками, помощь новичкам
Как спаять алюминий в домашних условиях, особенности пайки алюминия
Как сделать катушку Тесла своими руками?
Делаем открытую ретро-проводку своими руками
Что такое конденсатор, виды конденсаторов и их применение