Коэффициент трансформации

Разновидности приборов учета электроэнергии

Все существующие сегодня счетчики, разделяют по принципу их действия, бывают трехфазные и однофазные. К сети их подключают не напрямую, между ними, в цепи, в большинстве случаев, присутствует трансформатор. Но возможно и прямое включение. Для сетей с напряжением до 380В, применяют приборы учета электроэнергии от 5 до 20А. Мы уже знаем, что коэффициент трансформации, это разница между напряжением на входе в трансформатор, и напряжением на его выходе.

На электросчётчик попадает чистая электроэнергия, имеющая постоянное значение. Сегодня прибегают к использованию двух основных разновидностей приборов учета. До середины девяностых годов прошлого века, монтировали в основном счетчики индукционного типа. Они продолжают работать и сегодня, но постепенно идет замена их на электронные счетчики (это утверждение касается и общедомового счетчика).

Счетчик индукционного типа имеет устаревшую конструкцию. В основе его работы, взаимодействие магнитных полей, продуцируемых в индуктивных катушках и диске, который в процессе вращения считывает расход электричества. Недостаток этих приборов состоит в том, что они не в состоянии обеспечить многотарифный учет. К тому же, нет возможности удаленной передачи данных.

В основе работы электронных счетчиков, лежат микросхемы, они напрямую преобразуют считываемые сигналы. В этих устройствах нет вращающихся частей, что значительно повышает их надежность и долговечность службы. Проще говоря, коэффициент трансформации счетчика, оказывает прямое влияние на точность выдаваемых им данных.

Раньше, показатели точности составляли 2.5, но приборы учета, используемые сегодня, имеют класс точности, на уровне 2.0. Такие высокие данные точности, имеет именно оборудование электронного типа. Сегодня повсеместно устанавливают только электронные счетчики, которые уверенно вытесняют индукционные.

Главное преимущество, технологически продвинутого оборудования, состоит в том, что они являются многотарифными. Такое обстоятельство позволяет не только учитывать суточный уровень потребления электроэнергии, но также и в соответствии с порой года. Смена тарифов контролируется автоматикой и производится автономно, не требуя вмешательства человека.

Коэффициент трансформации счетчика электроэнергии (КТ) – это одна из технических величин, виляющих на точность показаний прибора учёта.

Показатель определяется эффективностью функционирования трансформаторной подстанции.

Разберем подробно данную величину.

Калькулятор

Для упрощения вычислений удобно пользоваться онлайн-калькулятором. Алгоритм программы позволяет вычислить энергопотери трансформатора без сложных формул. Но полученные результаты следует рассматривать как ориентировочные. Для ввода используют следующие данные:

  • из техпаспорта прибора берут величину Sном (кВА);
  • вводят значение Ркз – справочный (паспортный) параметр (кВт);
  • выбирают Pхх в технической документации прибора (кВт);
  • указывают нагрузочный ток Iхх в процентном выражении (%);
  • обозначают напряжение Uкз – справочная информация (%);
  • вводят коэффициент загрузки K в относительных единицах;
  • указывают время эксплуатации прибора с максимальной загрузкой Тм (час);
  • из фактического режима эксплуатации оборудования берут годовое число часов работы агрегата Тг (час);
  • средний тариф Со на активную электроэнергию в расчетном периоде (руб/кВт*час).

После введения данных программа рассчитывает необходимые значения.

Поскольку энергопотери приводят к увеличению расхода материалов и средств, они вызывают удорожание электроэнергии. Сведение убыли непродуктивных энергозатрат силовых агрегатов к минимуму позволяет конструировать устройства с максимальным коэффициентом полезного действия. Применяя на практике методы расчета потерь активной мощности трансформаторных узлов, можно определить экономичность функционирования оборудования и необходимость установки в замкнутых цепях компенсирующей аппаратуры.

Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.

В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Коэффициент трансформации

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Особенности учета

Коэффициент трансформации

Для уменьшения энергопотерь электричество транспортируется по высоковольтным линиям, чтобы привести характеристики сети в соответствие с параметрами бытовой техники применяются трансформаторы, понижающие напряжение.

Таким образом, домашний электросчетчик фиксирует не реальное потребление, а лишь количество электричества с пониженным напряжением, поэтому для определения точных затрат необходимо умножить показания прибора учета на коэффициент трансформации.Коэффициент трансформации Соответствие коэффициента трансформации и номинального напряжения Многие коммунальные предприятия делают это заранее, при составлении тарифов для населения, в таком случае используется среднее значение.

Методы расчета коэффициент трансформации

Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.

Существует 3 метода определения коэффициента трансформации:

  • технические документы от производителя;
  • мост переменного тока;
  • последовательные измерения вольтметром.

Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.

При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.

Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.

Популярные статьи  Резистор — что это такое и для чего нужен

Коэффициент трансформации

Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.

При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.

Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.

Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).

Как выбрать трансформаторы тока для подключения расчетных счетчиков

Счетчики для расчетов за потребляемую электроэнергию между энергоснабжающей организацией и потребителями следует устанавливать на границе раздела сети по балансовой принадлежности и эксплуатационной ответственности между энергоснабжающей организацией и потребителем. Число счетчиков на объекте должно быть минимальным и обосновано принятой схемой электроснабжения объекта и действующими тарифами на электроэнергию для данного потребителя. Расчетные счетчики у арендаторов, находящихся в жилых, общественных и других зданиях и обособленных в административно-хозяйственном отношении, надо устанавливать раздельно для каждого самостоятельного потребителя (организации, домоуправления, ателье, магазина, мастерской, склада и т. д.).

Коэффициент трансформации трансформаторов тока следует выбирать по расчетной присоединяемой нагрузке с учетом работы установки в аварийном режиме. Завышенным по коэффициенту трансформации считается такой трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика (номинальный ток счетчика — 5 А).

В зависимости от величин сопротивления потребителей вторичной цепи Z 2, Ом, и вторичной нагрузки трансформатора тока S2, ВА, один и тот же трансформатор тока может работать в различных классах точности. Для обеспечения достаточной точности показаний приборов и действия аппаратов защиты, подключенных к трансформатору тока, необходимо, чтобы величина Z2 не выходила за пределы номинальной нагрузки трансформатора тока.

Трансформаторы тока имеют токовые ΔI и угловые погрешности δ. Токовая погрешность, проц. по приведенному соотношению учитывается в показаниях всех приборов:

где kном — номинальный коэффициент трансформации; I1 и I2 — ток соответственно первичной и вторичной обмоток трансформатора.

Угловая погрешность определяется углом δ между векторами тока I1 и I2 и учитывается только в показаниях счетчиков и ваттметров.

Трансформаторы тока имеют следующие классы точности: 0,2; 0,5; 1; 3; 10, что соответствует величинам токовых погрешностей, проц. Класс точности трансформаторов тока должен быть для счетчиков коммерческого учета — 0,5; для электроизмерительных приборов— 1; для реле токовых защит — 3; для лабораторных приборов — 0,2.

Пример выбора трансформаторов тока для подключения счетчика.

Расчетный ток присоединения в нормальном режиме — 90 А, в аварийном — 126 А.

Выбирают трансформаторы тока с коэффициентом трансформации n т = 150/5 исходя из нагрузки в аварийном режиме.

Проверка. При 25%-ной нагрузке ток в первичной цепи составляет I1 = ( 90 х 25)/100 = 22,5 А.

Ток во вторичной цепи (при коэффициенте трансформации n т = 150. 5 = 30) составит

I 2 = I1/nt = 22. 5/30 = 0,75 А.

Трансформаторы тока выбраны правильно, так как I 2 > I н счетчика, т. е. 0,75 > 0,5.

Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм2. Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам счетчика, не должно превышать 10 мм2.

При выборе трансформаторов тока к расчетным счетчикам рекомендуется использовать данные из ПУЭ (таблица «Выбор трансформаторов тока»). До приборов учета, смонтированных на вводе в целях безопасной установки, проверки и замены счетчиков и трансформаторов тока в электроустановках при наличии двух питающих линий (вводов) и двух распределительных сборок, имеющих коммутационные аппараты для их соединения (секционные рубильники, АВР и др.), до приборов учета, смонтированных на вводе, должны быть установлены отключающие аппараты, а после приборов учета — аппараты, обеспечивающие разрыв цепи со стороны распределительных сборок.

Показатель: коэффициент трансформации счетчика

Для проверки класса электросчетчика и реального уровня электропотребления ведут определенные расчеты.

А именно:

  1. Снимают показания со счетчика и умножают на коэффициент трансформации, указанного общедомовым трансформатором.
  2. Например, показания счетчика равны 70 кВт*ч, а трансформатор понижает напряжение в 20 раз (коэфф. трансформации получается равен 20), то умножаем эти два показателя и получаем реальный расход электричества (70*20=1400 кВт*ч).
  3. Иногда появляется необходимость в определении коэффициента трансформации, чтобы определить значение уменьшенного электросчетчика трансформатором, поскольку на счетчике нет соответствующего идентификатора (Кт на приборе).

Для расчета используют специальный прибор, при этом одновременно на вторичной обмотке фиксируют величину электрического тока

Затем необходимо поделить значение (важно, что теперь оно получено от прохождения через вторую обмотку) первичного тока, который ранее подавался на первичную обмотку. В результате чего появится необходимое значение коэффициента трансформации

Обычно в качестве измерительного прибора используют амперметра. На нем выставляется значение в 5 ампер для вторичного тока, то есть ток теперь будет измеряться в этих пределах. С помощью полученного расчета также определяют, к какому классу точности относится электросчетчик.

Как рассчитать коэффициент трансформации

Коэффициентом трансформации «k» называется отношение напряжения U1 на концах первичной обмотки трансформатора к напряжению U2 на выводах его вторичной обмотки, определенному на холостом ходу (когда вторичных обмоток несколько, то коэффициентов k – тоже несколько, они определяются в этом случае по очереди). Это отношение принимается равным соотношению количеств витков в соответствующих обмотках.

Величина коэффициента трансформации легко вычисляется путем деления показателей ЭДС обмоток исследуемого трансформатора: ЭДС первичной обмотки – на ЭДС вторичной.

Коэффициент трансформации имеет очень важное значение как величина, при помощи которой вторичная обмотка приводится к первичной. В эксплуатационных условиях имеет большое значение коэффициент трансформации напряжения, под которым понимают отношение номинальных напряжений трансформатора

Для однофазных трансформаторов между коэффициентами трансформации ЭДС и напряжений нет разницы, но в трехфазных трансформаторах следует строго различать их друг от друга.

В идеале потери мощности (на токи Фуко и на нагрев проводников обмоток) в трансформаторе полностью отсутствуют, поэтому и коэффициент трансформации для идеальных условий рассчитывается простым делением напряжений на выводах обмоток. Но ничего идеального в мире нет, поэтому иногда необходимо прибегать к замерам.

Популярные статьи  Промышленные штепсельные соединители

В реальности мы всегда имеем дело с повышающим или с понижающим трансформатором. У трансформаторов напряжения повышающих коэффициент трансформации всегда меньше единицы (и больше нуля), у понижающих — больше единицы. То есть коэффициент трансформации свидетельствует о том, во сколько раз ток вторичной обмотки под нагрузкой отличается от тока первичной обмотки, или во сколько крат напряжение вторичной обмотки меньше подаваемого на первичную обмотку.

Например, понижающий трансформатор ТП-112-1 имеет по паспорту коэффициент трансформации 7,9/220 = 0,036, значит номинальному току (по паспорту) вторичной обмотки в 1,2 ампера соответствует ток первичной обмотки 43 мА.

Зная коэффициент трансформации, измерив его например двумя вольтметрами на холостом ходу, можно убедиться в правильности соотношения количеств витков в обмотках. Если зажимов несколько, то измерения проводят на каждом ответвлении. Измерения такого рода помогают обнаруживать поврежденные обмотки, определять их полярности.

Есть несколько путей определения коэффициента трансформации:

путь непосредственного измерения напряжений вольтметрами;

методом моста переменного тока (например портативным прибором типа «коэффициент» для анализа параметров трехфазных и однофазных трансформаторов);

по паспорту данного трансформатора.

Для нахождения реального коэффициента трансформации традиционно применяют два вольтметра . Номинальный коэффициент трансформации рассчитывают путем деления значений напряжений, измеренных на холостом ходу (они и указаны в паспорте на трансформатор).

Если проверяется трехфазный трансформатор, то измерения следует провести для двух пар обмоток с наименьшим током КЗ. Когда трансформатор имеет выводы, часть которых скрыта под кожухом, то значение коэффициента трансформации определяется только для тех концов, которые доступны снаружи для присоединения приборов.

Если трансформатор однофазный, то рабочий коэффициент трансформации легко рассчитать, разделив напряжение приложенное к первичной обмотке, на в этот же момент измеренное вольтметром напряжение на вторичной обмотке (с подключенной нагрузкой ко вторичной цепи).

Применительно к трехфазным трансформаторам, данная операция может быть выполнена различными путями. Первый путь — подача на высоковольтную обмотку трехфазного напряжения от трехфазной сети, или второй путь – подача однофазного напряжения только на одну высоковольтную обмотку из трех, без выведения или с выведением нулевой точки. В каждом варианте измеряют линейные напряжения на одноименных зажимах первичных и вторичных обмоток.

В каждом случае нельзя подавать на обмотки напряжение существенно превосходящее номинальное значение, указанное в паспорте, ведь тогда погрешность измерения окажется высокой из-за потерь даже на холостом ходу.

Свойства трансформатора

Как работает и как выбрать трансформатор тока

В представленной выше схеме серийного изделия функциональность обеспечивают две катушки индукции, закрепленные на сердечнике из металла. При подключении к источнику питания переменного тока формируется электромагнитное поле, которое создает ток во второй обмотке по базовым законам электродинамики. В упрощенном варианте пренебрегают затратами энергии на повышение температуры проводников и потерями, которые обеспечивают вихревые токи. Для приблизительного расчета применяют формулу:

Ктр = Uвх/Uвых = N1/N2, где N – количество витков в первичной и вторичной обмотках, соответственно.

Масштабирование напряжения

Этот термин подчеркивает суть рассматриваемого явления. Фактически трансформация (преобразование) энергии в данном случае не происходит. Изменяется в сторону увеличения (уменьшения) определенный параметр. Несмотря на взаимную связь всех базовых компонентов, отдельно рассматривают только важнейший показатель для решения определенной инженерной задачи (напряжение, силу тока или электрическое сопротивление).

Если подключить трансформатор по схеме, показанной на картинке выше, формулу коэффициента трансформации можно определить следующим образом:

Ктр = Uвх/Uвых = (E*N1 + I1*R1)/ (E*N2 + I2*R2),

где

  • E – электродвижущая сила, которая наводится в одиночном витке;
  • I, R – токи, активные электрические сопротивления (значения для соответствующих обмоток).

Масштабирование силы тока

В этом примере первичную обмотку подключают к источнику питания последовательно через небольшую нагрузку (Ктр = I1/I2). Зависимость токов и количества витков:

I1*N1 = I2*N2 +Iх.

В этом выражении Ix – ток холостого хода, который обусловлен отмеченными выше вихревыми явлениями и потерями на повышение температуры магнитопровода. Простым математическим преобразованием можно получить значение коэффициента трансформации через количество витков (без учета сопутствующих энергетических затрат):

Ктр = N2/N1.

Масштабирование сопротивления

В отдельных ситуациях функциональность электротехнического устройства (отдельных блоков) будет определять именно сопротивление подключаемой нагрузки. Наглядный пример – согласование типовых низкоомных динамиков (6-8 Ом) и выходного тракта усилителя мощности звукового диапазона.

Согласующий трансформатор

При воспроизведении технологии сварки в рабочей области фактически поддерживается режим короткого замыкания. Если не отделить эту часть от источника питания, сеть будет подвергаться чрезмерным нагрузкам. В этой ситуации пригодится трансформатор, который сохраняет путь передачи электроэнергии с одновременным выполнением необходимых защитных функций.

Для этих примеров особое значение приобретает баланс:

W1 = W2 + Wп.

В этом выражении приведены обозначения мощностей:

  • W1 – потребления;
  • W2 – передаваемой в нагрузку;
  • Wп – потерь.

Последовательность элементарных преобразований позволит получить следующие выражения, по которым будут вычисляться отдельные параметры:

  • W1 = I1 * U1 = U12/Z1;
  • W2 = I2 * U2 = U22/Z2;
  • с исключением потерь: U12/Z1 = U22/Z2;
  • Ктр (по сопротивлению) = U12/U22 = Z1/ Z2 = Ктр2 (по напряжению).

К сведению. В этих выражениях Z1 (Z2) – это сопротивления нагрузки для источника питания при подключенном трансформаторе или без него, соответственно.

Итоговые замечания

Следует подчеркнуть неизменность воспроизведения трансформатором рабочих процессов в любом из представленных выше примеров. Тип масштабирования будет определяться целевым назначением определенной схемы. В зависимости от необходимости учитывают коэффициент трансформатора по соответствующему параметру (U, I или Z). Способность повышать, понижать или поддерживать равный уровень напряжения объясняется только количеством витков.

К сведению. При расчете измерительной аппаратуры и в других ситуациях для повышения точности учитывают энергетические потери, фазовый сдвиг электрических параметров и влияние внешних факторов.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

в которой:

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

в которой:

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

Также читайте: Автоматическое повторное включение — АПВ

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Более подробно про КПД трансформатора можете прочитать здесь(откроется в новой вкладе, читать со страницы 14):Открыть файл

Электронные или индукционные

Специалисты в области электротехники отмечают, что на сегодняшний день потребители отдают предпочтение электронным видам считывающих устройств, поскольку у них класс точности ниже, чем у индукционных устройств. Коэффициент трансформации счетчика влияет на точность конечных показаний. В среднем у индукционных образцов класс точности равен 2.5, тогда как у электронных – 2.0. Это означает, что погрешность показаний в результате работы электрического считывающего устройства электронного типа составляет до 2%, а у индукционного – 2,5%.

Именно по этой причине на данный момент чаще устанавливается электронное оборудование, так как оно позволяет больше сэкономить, получая показании точней. Специалисты настоятельно не рекомендуют устанавливать оборудование с завышенным значением коэффициента трансформации. В современной электротехнике принято использовать трансформаторы со статичным КТ, который гарантированно не будет изменяться при эксплуатации.

К таким электрическим счетчикам можно отнести Меркурий-230. Меркурий-230 производится на территории России и считается одним из лучших образцов для коммерческого и частного использования. Меркурий-230 может изготавливаться для одно- и друхтарифного плана. Обычно модель Меркурий-230 поддерживает трехфазную электрическую сеть. В среднем для Меркуия-230 гарантийный срок составляет 25 лет, что является оптимальным выбором при учете качества и цены. Меркурий-230 полностью соответствует ГОСТ стандартам.

Меркурий-230 имеет хороший класс точности и стабильно работает при значительных изменениях температуры в окружающей среде в течение всего срока эксплуатации устройства. Меркурий-230 позволяет обеспечить точное измерение текущих параметров электрической сети – частоту, коэффициент мощности, текущее значение фазного тока, напряжение.

Тарификатор Меркурия-230 позволяет одновременно учитывать показания по 4 тарифам в 16 временных зонах суток, а также для четырех типов дня. Меркурий-230 может учитывать активную электроэнергию прямого направления и полной ее мощности по фазам, сумме значений фаз с определением направления вектора полной мощности.

Разные виды трансформаторов и их коэффициенты

Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:

  • силовой;
  • автотрансформатор;
  • импульсный;
  • сварочный;
  • разделительный;
  • согласующий;
  • пик-трансформатор;
  • сдвоенный дроссель;
  • трансфлюксор;
  • вращающийся;
  • воздушный и масляный;
  • трехфазный.

Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.

Коэффициент трансформации

Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель – это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.

Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.

Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.

Номинальная вторичная нагрузка, В 3 5 10 15 20 30 40 50 60 75 100
Коэффициент, n Номинальная предельная кратность
3000/5 37 31 25 20 17 13 11 9 8 6 5
4000/5 38 32 26 22 20 15 13 11 10 8 6
5000/5 38 29 25 22 20 16 14 12 11 10 8
6000/5 39 28 25 22 20 16 15 13 12 10 8
8000/5 38 21 20 19 18 14 14 13 12 11 9
10000/5 37 16 15 15 14 12 12 12 11 10 9
12000/5 39 20 19 18 18 12 15 14 13 12 11
14000/5 38 15 15 14 14 12 13 12 12 11 10
16000/5 36 15 14 13 13 12 10 10 10 9 9
18000/5 41 16 16 15 15 12 14 14 13 12 12

Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:

Коэффициентом трансформации трансформаторов называется отношение напряжения обмотки высшего напряжения (ВН) к напряжению обмотки низшего напряжения (НН) при холостом ходе:

Где: Кл- коэффициент трансформации линейных напряжений;

U1 — линейное напряжение обмотки ВН;

U2 — линейное напряжение обмотки НН.

При определении коэффициента трансформации однородных трансформаторов или фазного коэффициента трансформации трехфазных

трансформаторов отношение напряжения можно приравнять к отношению чисел витков обмотки

где: Кф — фазный коэффициент трансформации;

U1ф,U2ф — фазные напряжения обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток ВН и НН соответственно.

При измерении линейного коэффициента трансформации трехфазного трансформатора равенство отношения высшего и низшего линейных напряжения обмоток и соответственно числа витков ВН и НН сохраняется лишь при одинаковых группах соединения этих обмоток.

Если первичная и вторичная обмотки соединены по одинаковой схеме, например, обе в звезду, обе в треугольник и так далее, фазный и линейный коэффициенты трансформации равны друг другу. При различных схемах соединений обмоток, например, одной в звезду, а другой в треугольник, линейньй и фазный коэффициенты трансформации неодинаковы (они в данном случае отличаются друг от друга в 3 раз).

Определение коэффициента трансформации производится на всех ответвлениях обмоток и для вех фаз. Эти измерения, кроме проверки самого коэффициента трансформации дают возможность проверить также правильность установки переключателя напряжения на соответствующих ступенях, а также целостность обмоток.

Для определения коэффициента трансформации применяют метод двух вольтметров (рис.2)

Коэффициент трансформации

Рис.2 Определение коэффициента трансформации.

Со стороны высокого напряжения (ВН) подводится трехфазовое напряжение 220 В и измеряется напряжение на вторичной обмотке.

Внимание! Напряжение подводится только к обмоткам ВН (А, В, С). Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В

Пределы измерения вольтметров: PV1-250 В,PV2-15В

Результаты измерений заносятся в таблицу 2. Пределы измерения вольтметров: PV1-250 В,PV2-15В.

Примечание: В данной работе трансформатор имеет одно положение переключателя.

Коэффициент трансформации отдельных фаз, замеренных на одних и тех же ответвлениях не должен отличаться друг от друга более чем на 2%.

Оцените статью
Adblock
detector