Виды твердотельных реле
Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле
Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.
На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике
А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках
Слева однофазное реле, справа трехфазное.
Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.
Принцип работы и устройство
Твердотельные реле позволяют объединить высоковольтные и низковольтные цепи.
Большинство устройств твердотельных реле имеет общую концепцию с различными дополнениями и изменениями, не влияющими на принцип работы.
Что такое твердотельное реле? Это устройство, состоящее из следующих элементов:
- входного узла;
- системы оптической развязки;
- триггерной цепи;
- переключателя;
- защиты.
В качестве входа используется первичная цепь с резистором. Подключение последовательное. Задача цепи входа — принять сигнал и предать команду коммутатору.
Изоляцией входной и выходной цепи служит устройство оптической развязки. Его тип обусловливает принцип работы и вид реле.
Триггерная цепь обрабатывает входной сигнал и переключает выход. В зависимости от модели контактора, она может быть частью оптической развязки либо самостоятельным элементом.
Для подачи напряжения применяется цепь переключателя. В данной операции задействуют симистор, кремниевый диод и транзистор.
Защитная цепь необходима для предотвращения появления ошибок и прочих сбоев в работе. Она бывает внешнего или внутреннего вида.
Принцип работы твердотельного реле состоит в замыкании и размыкании коммутируемых контактов, передающих напряжение на устройство. Чтобы контакты начали работать, требуется активатор. Эту задачу выполняет твердотельный прибор. Устройства, работающие на постоянном токе, используют транзистор, на постоянном — симистор или тиристор.
Каждый прибор, имеющий ключевой транзистор, является твердотельным контактором. В качестве примера можно рассмотреть датчик света, осуществляющий передачу напряжения с помощью транзистора.
Оптическая цепь нейтрализует гальванический эффект, который образуется в результате напряжения между контактами и катушкой.
Watch this video on YouTube
Преимущества и недостатки ТТР
Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.
Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек
К таким достоинствам относят:
- Низкое потребление электроэнергии (на 90% меньше).
- Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
- Высокая скорость запуска и отключения
- Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
- Не предполагается техническое обслуживание.
- Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
- Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
- Отсутствие электромагнитных помех при срабатывании.
- Исключается порча контактов вследствие их механического удара.
- Отсутствие прямого физического контакта между цепями управления и коммутации.
- Возможность регулирования нагрузки.
- Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
- Возможность использования во взрывоопасных средах.
Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.
Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)
ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.
К минусам относят:
- Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
- Высокая стоимость.
- Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
- Ограничения по использованию в условиях повышенной влажности.
- Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
- Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
- Возможность расплавления устройства от нагрева при коротком замыкании.
- Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.
Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.
Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.
Это интересно: Перегорают галогеновые лампочки в люстре: в чем причина?
Принцип работы твердотельного реле
Рис. №3. Схема работы с использованием твердотельного реле. В положении выключено, когда на входе наблюдается 0 В, твердотельное реле не дает пройти току через нагрузку. В положение включено, на входе есть напряжение, ток идет через нагрузку.
Основные элементы регулируемой входной цепи переменного напряжения.
- Регулятор тока служит для поддержки неизменного значения тока.
- Двухполупериодный мост и конденсаторы на входе в устройство служат для преобразования сигнала переменного тока в постоянный.
- Встроенный оптрон оптической развязки, на него подается питающее напряжение и через него протекает входной ток.
- Тригерная цепь служит для управления эмиссией света встроенного оптрона, в случае прекращения подачи входного сигнала ток прекратит свое протекание через выход.
- Резисторы, расположенные в схеме последовательно.
В твердотельных реле используется два распространенных типа оптических развязок – семистор и транзистор.
Симистор обладает следующими преимуществами: включение в состав развязки тригерной цепи и ее защищенность от помех. К недостаткам следует отнести дороговизну и необходимость больших величин тока на входе в устройство, необходимого для переключения выхода.
Рис. №4. Схема реле с семистором.
Тиристор — не нуждается в наличии большого значения тока для переключения выхода. Недостаток – нахождение триггерной цепи вне развязки, а значит большее число элементов и слабая защита от помех.
Рис. №5. Схема реле с тиристором.
Рис. №6. Внешний вид и расположение элементов в конструкции твердотельного реле с транзисторным управлением.
Принцип работы твердотельного реле типа SCR полупериодного управления
При прохождении тока через реле исключительно в одном направлении величина мощности снижается почти на 50%. Для предотвращения этого явления используют два параллельно подключенных SCR, расположенные на выходе (катод соединяется анодом другого).
Рис. №7. Схема принципа работы полупериодного управления SCR
Типы коммутирования твердотельных реле
- Управление коммутационными действиями при переходе тока через ноль.
Рис. №8. Коммутация реле при переходе тока через ноль.
Используется для резистивной нагрузки в системах управления и контролирования нагревательных устройств. Использование в слабоиндуктивных и емкостных нагрузках.
- Фазовое управление твердотельным реле
Рис.№9. Схема фазного управления.
Основные показатели для выбора твердотельных реле
- Ток: нагрузки, пусковой, номинальный.
- Тип нагрузки: индуктивность, емкость или резистивная нагрузка.
- Тип напряжения цепи: переменное или постоянное.
- Тип сигнала управления.
Рекомендации по подбору реле и эксплуатационные нюансы
Токовая нагрузка и ее характер служат главным фактором, определяющим выбор. Реле выбирается с запасом по току, в который входит учет пускового тока (он должен выдержать 10-кратное превышение тока и перегруз на 10 мс). При работе с обогревателем номинальный ток превышает номинальный ток нагрузки не менее чем на 40%. При работе с электродвигателем запас по току рекомендован быть больше номинала не менее чем в 10 раз.
Ориентировочные примеры выбора реле при превышении тока
- Нагрузка активной мощности, например, ТЭН – запас 30-40%.
- Электродвигатель асинхронного типа, 10 кратный запас по току.
- Освещение с лампами накаливания – 12 кратный запас.
- Электромагнитные реле, катушки – от 4 до 10 кратного запаса.
Рис. №10. Примеры выбора реле при активной нагрузке по току.
Такой электронный компонент электрических цепей как твердотельное реле становиться обязательным интерфейсом в современных схемах и обеспечивает надежную электрическую изоляцию между всеми задействованными электроцепями.
Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Внутривидовые отличия
Кроме основной классификации, стоит выделить отличия внутри существующих видов ТТР.
Выделяются такие типы:
- ТРЕХФАЗНЫЕ — способны проводить токи величиной 10-120 Ампер одновременно в трех фазах.
- РЕВЕРСИВНЫЕ — устройства, построенные на полупроводниковом принципе, способные работать в схемах с постоянным и переменным током. По назначению и принципу действия они идентичны однофазным. Обязательное условие — наличие управляющей цепи, защищающей устройство от ложного срабатывания. К преимуществам твердотельных трехфазных реле стоит отнести способность работать одновременно по 3-м фазам, а также продолжительный ресурс. Повышенный срок службы объясняется наличием надежной изоляции и продуманной управляющей цепи. В процессе применения твердотельных моделей нет шума, искр, дребезжания при переключениях и других негативных факторов.
- ОДНОФАЗНЫЕ — изделия, обеспечивающие разделение цепи при переходе синусоиды через ноль. ТТР работает в следующем диапазоне — 10-500 А. Управление осуществляется несколькими способами.
Терморезистор: назначение, сопротивление и характеристики, маркировка, принцип работы, как проверить и подключить
Твердотельное реле своими руками
Детали и корпус
- F1 — предохранитель на 100 мА.
- S1 — любой маломощный переключатель.
- C1 – конденсатор 0.063 мкФ 630 Вольт.
- C2 – 10 — 100 мкФ 25 Вольт.
- C3 – 2.7 нФ 50 Вольт.
- C4 – 0.047 мкФ 630 Вольт.
- R1 – 470 кОм 0.25 Ватт.
- R2 – 100 Ом 0.25 Ватт.
- R3 – 330 Ом 0.5 Ватт.
- R4 – 470 Ом 2 Ватта.
- R5 – 47 Ом 5 Ватт.
- R6 – 470 кОм 0.25 Ватт.
- R7 – варистор TVR12471, или подобный.
- R8 – нагрузка.
- D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
- D2 – стабилитрон на 6.2 Вольта.
- D3 – диод 1N4007.
- T1 – симистор ВТ138-800.
- LED1 – любой сигнальный светодиод.
Современная электротехника и радиоэлектроника всё больше отказывается от механических узлов, имеющих значительные размеры и подверженных быстрому износу. Одной из областей, где это проявляется сильнее всего, являются электромагнитные реле. Все прекрасно понимают, что даже самое дорогое реле, с платиновыми контактами, рано или поздно выйдет из строя. Да и щелчки при переключении могут напрягать. Поэтому промышленность наладила активный выпуск специальных твердотельных реле.
Такие твердотельные реле могут использоваться практически везде, однако в настоящее время они пока ещё остаются очень дорогими. Поэтому имеет смысл собрать его самому. Тем более их схемы просты и понятны. Твердотельное реле работает как стандартное механическое реле — вы можете использовать низкое напряжение для переключения более высокого напряжения.
Пока на входе не присутствует напряжение постоянного тока (в левой части схемы), фототранзистор TIL111 открыт. Чтобы повысить защищённость от ложных срабатываний, база TIL111 подается эмиттер через 1М резистор. На базе транзистора BC547B будет высокий потенциал и, таким образом, он остается открытым. Коллектор замыкает управляющий электрод тиристора TIC106M на минус, и он остается в закрытом положении. Через выпрямительный диодный мост ток не проходит и нагрузка отключена.
При определенном входном напряжении, скажем, 5 вольт, диод внутри TIL111 загорается и активирует фототранзистор. Происходит закрытие транзистора BC547B и отпирание тиристора. Это создает достаточно большое падение напряжения на резисторе 330 Ом для переключения симистора TIC226 во включенное положение. Падение напряжение на симисторе в тот момент всего несколько вольт, так что практически всё напряжение переменного тока течёт через нагрузку.
Симистор защищен от импульсов через 100 нФ конденсатор и 47 ом резистор. Чтобы создать возможность устойчивого переключения твердотельного реле с различными управляющими напряжениями, был добавлен полевой транзистор BF256A. Он действует как источник тока. Диод 1N4148 установлен, чтобы защитить цепь в случае неправильной полярности. Эта схема может быть использована в различных устройствах, с мощностью до 1,5 КВт, конечно если вы установите тиристор на большой радиатор.
Известные модели
Расшифровка маркировки
Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:
- ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
- ТС. Модели, которые выключаются в любой момент времени.
- Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
- Тс/ТМ – силовые. Токи достигают значений 25 мА.
- ТСА, ТМА – применяются в чувствительных приборах.
- ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
- ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.
К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.
Расшифровка
Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.
Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).
Принцип работы
В зависимости от вида твердотельного реле, может отличаться и принцип его действия. В основе работы лежит два сигнала – управляющий и управляемый, которые могут генерироваться и передаваться различным способом. Поэтому в качестве примера мы рассмотрим одну из разновидностей данного устройства, функционирующего посредством оптрона.
Рис. 2. Принцип действия твердотельного реле
Оптрон, в соответствии с п.1.1 ГОСТ 29283-92 осуществляет генерацию электромагнитных или световых импульсов с определенными параметрами. В соответствии с которым и происходит взаимодействие его компонентов. Конструктивно оптрон представляет собой оптическую пару – светодиод и фотодиод, установленные в разных блоках твердотельного реле.
При подаче питания на входной узел твердотельного реле начнется протекание тока через цепь светодиода. В результате чего световое излучение попадет на фотодиод. При достижении световым потоком заданной интенсивности, фотодиод установит рабочие параметры для цепи нагрузки и произведет коммутацию нагрузки.
Твердотельное реле – устройство и особенности конструкции
На температурный режим могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).
Защита
- Твердотельные реле имеют встроенную RC-цепь для защиты от ложного включения при использовании на индуктивной нагрузке.
- Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы.Они подбираются исходя из величины коммутируемого напряжения Uвар=1,6-2Uком. Следует отметить, что современные ТР выдерживают значительные перенапряжения и без применения варисторов. Гораздо опаснее для ТР перегрузка по току.
- Для защиты от перегрузки по току необходимо использовать специальные быстродействующие полупроводниковые предохранители. Они подбираются с учетом величины номинального тока реле Iпр=1 — 1,3Iном., причем само ТР должно быть с гораздо большим запасом по току, в т.ч.учитывая пусковые токи нагрузки. Это самый эффективный способ защитить ТР от перегрузки по току. Поскольку реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты не спасет их от выхода из строя.
- Для корректной работы твердотельного реле при маленьких токах нагрузки (соизмеримых с током утечки) необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.
Примеры применения
Основное применение ТР находят в системах управления нагревом.
Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах, где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим).
При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.
Твердотельные реле ZA2 чаще применяют в системах, где не требуется высокая точность поддержания температуры (двухпозиционный режим).
Твердотельные реле VA (управление переменным резистором) применяют для ручной регулировки мощности на нагрузке.
Таким устройством можно отрегулировать мощность ТЭНа или ИК-излучателя, изменять яркость свечения лампы накаливания.
Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и ТР подбирать с многократным запасом по току.
Применять меры по дополнительному отводу тепла. Для защиты ТР от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.
Можно организовать управление группой реле от одного источника питания.
В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения – выключения отдельного реле для управления требуемой зоной.
Как проверить твердотельное реле мультиметром?
Мультиметр – прибор, которым фактически определяется импеданс в момент подачи небольшого уровня напряжения через щупы непосредственно в тестируемую цепь. Затем мультиметром измеряется ток, протекающий через щупы, с последующим вычислением сопротивления.
Теоретически всё достаточно просто. Через классическую формулу тоже:
R = U / I
Однако, как отмечалось выше по тексту, выход твердотельного электронного реле включается путём «отбора» небольшой части напряжения из сети переменного тока для подачи управляющего тока на затвор тиристоров.
Проще говоря, если сеть переменного тока не подключена к твердотельному реле, на выходе какой-либо потенциал отсутствует. Поскольку тех уровней напряжения и тока, что создаются мультиметром, недостаточно для включения тиристоров, выход твердотельного электронного реле останется в состоянии «отключено».
Как результат твердотельные электронные реле невозможно проверить, если рассчитывать на значительное изменение выходного импеданса в моменты включения твердотельного реле.
Поэтому эффективный способ стендовых испытаний твердотельного реле — это построение простой испытательной схемы, куда входит источник питания постоянного тока (батарея на 9 вольт). Также понадобится лампа накаливания мощностью 60 или 100 Вт.
Простая электрическая схема для проверки твердотельного реле на работоспособность или на дефект: L1, L2 – сетевой терминал; Л1 – лампа накаливания; ТЭР – твердотельное электронное реле; К1 – кнопочный коммутатор; ИП – источник питания постоянного напряжения
Картинка выше демонстрирует базовую схему подключения, пригодную для проверки твердотельного реле постоянного тока. Когда на выход прибора подключается сеть переменного напряжения, лампа накаливания гореть не должна. Когда же кнопка К1 приводится в действие, источник постоянного напряжения активирует вход прибора, соответственно, выход включается, лампа накаливания загорается.
Аналогичная испытательная схема проверки пригодна для тестирования работоспособности твердотельного электронного реле на входе переменного тока. Достаточно лишь заменить источник постоянного тока подключением к сети переменного тока через К1, как показано на схеме ниже.
Второй вариант схемы без внешнего источника питания: L1, L2 – сетевой терминал; Л1 – лампа накаливания; ТЭР – тестируемый электронный прибор; К1 – кнопочный коммутатор
Как и в случае с выходом, вход не чувствителен к полярности. Однако эту схему допустимо использовать только в том случае, если напряжение сети меньше максимального номинального входного напряжения проверяемого устройства. Подача напряжения на вход, превышающего максимальное значение прибора, приведёт к повреждению.
Как проверить твердотельное реле на функциональность?
Первую схему проверки мультиметром твердотельного реле также допустимо применять для оценки функциональности выхода твердотельного прибора постоянного тока. Это можно сделать, применив второй источник питания для переключения выхода вместо сетевого импеданса.
Однако источник питания здесь должен иметь достаточное напряжение для включения лампы накаливания мощностью 40 Вт или 60 Вт. В большинстве случаев достаточно источника питания на 60 вольт постоянного тока, способного обеспечить нагрузку до 1А.
Кроме того, в отличие от выхода ТЭР переменного тока, выход ТЭР постоянного тока чувствителен к полярности. Клеммы «+» и «-» источника питания необходимо подключать к соответствующим клеммам «+» и «-» выхода.
Нагрузка лампой обеспечивает лёгкое визуальное подтверждение работы прибора, но также необходимо учитывать, что в некоторых случаях предпочтительно использовать другой тип нагрузки для стендовой проверки. В большинстве случаев это не проблема, пока не превышаются номинальные значения напряжения и тока ТЭР.
Однако с твердотельными приборами постоянного тока следует быть несколько осторожнее. Если решено использовать:
- электрический двигатель,
- вентиляционную установку,
- катушку электромагнита,
или любой другой тип индуктивной нагрузки, в таком случае подавляющий диод (1N4937RLG или аналогичный) необходимо установить обратно параллельно нагрузке. Этим предотвращается повреждение прибора потенциалом обратной ЭДС при обесточенной нагрузке.
При помощи информации: Crydom
Виды устройств
Для корректной работы твердотельного реле при маленьких токах нагрузки соизмеримых с током утечки необходимо устанавливать шунтирующее сопротивление параллельно нагрузке. В соотношении с методом коммукации выделяют: устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции; реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание; реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.
Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. А теперь давайте рассмотрим более детально процесс изготовления устройства.
Параметры мощности — от 3 до 32 Вт.
Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 — источник напряжения управления; 2 — оптопара внутри корпуса реле; 3 — источник тока нагрузки; 4 — нагрузка Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия. Выбор и покупка твердотельного реле Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.
Характеристики твердотельного реле
Сначала давайте рассмотрим входные характеристики оптоизолятора MOC доступны другие опто-триаки. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор. От типа и особенностей развязки зависят общие конечные характеристики прибора и особенности его работы.
Отличия несущественные, на работу не влияют никак. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.
Комментарии
Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор. Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели
Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии
Остальное наглядно демонстрирует схема: Схема включения твердотельного реле Характеристики Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.
Проверим это на практике, допустим вы столкнулись с таким изделием как на рисунке ниже, и хотите узнать, что оно собой представляет. Охлаждение Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах.
Твёрдотельное реле. Что это такое и как работает? Испытание на практике
Защита от коротких замыканий
В случае повреждения изоляции в цели и по другим причинам может возникнуть КЗ. Чтобы избежать повреждения ТТР используются специальные предохранители. Они разработаны для применения в комплексе с твердотельными изделиями.
Их легко распознать по следующим спецификациям:
- gR — вставки плавки, работающие в широком диапазоне I. Они используются для защиты полупроводников. На сегодня это одни из наиболее быстродействующих приборов.
- gS — как и прошлые предохранители, могут работать во всех диапазонах I. Применяются в случае высокой нагрузки, а также для защиты полупроводников.
- aR — вставки плавки, не имеющие ограничений по I работы. Они устанавливаются для защиты полупроводников от КЗ. Недостатком таких изделий является высокая цена. Вот почему многие отдают предпочтение более доступным автоматам B-класса.
Твердотельное реле своими руками: рекомендации по подбору деталей и монтаж корпуса
- F1 — предохранитель на 100 мА.
- S1 — любой маломощный переключатель.
- C1 — конденсатор 0.063 мкФ 630 Вольт.
- C2 — 10–100 мкФ 25 Вольт.
- C3 — 2.7 нФ 50 Вольт.
- C4 — 0.047 мкФ 630 Вольт.
- R1 — 470 кОм 0.25 Ватт.
- R2 — 100 Ом 0.25 Ватт.
- R3 — 330 Ом 0.5 Ватт.
- R4 — 470 Ом 2 Ватта.
- R5 — 47 Ом 5 Ватт.
- R6 — 470 кОм 0.25 Ватт.
- R7 — варистор TVR12471, или подобный.
- R8 — нагрузка.
- D1 — любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например, 1N4007.
- D2 — стабилитрон на 6.2 Вольта.
- D3 — диод 1N4007.
- T1 — симистор ВТ138-800.
- LED1 — любой сигнальный светодиод.
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Читать далее: Монтаж септика Топас своими руками
Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем
На следующем этапе подготовленная пластина оснащается «опалубкой» — по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).