Защиты минимального и максимального напряжения

Содержание

Особенности монтажа

В отличие от реле напряжения у расцепителя РММ-47 нет своих силовых контактов, поэтому в характеристиках не указан номинальный ток. Он является приставкой или дополнительным устройством к автоматическим выключателям и выключателям нагрузки.

Для этого на боковой стороне большинства автоматических выключателей есть отверстие, которое обеспечивает подключение дополнительных устройств. На фото ниже вы можете увидеть, как получить к нему доступ. Для этого нужно провернуть заглушку и вынуть её из посадочного места.

Защиты минимального и максимального напряжения

В окошке вы видите часть взводного механизма автоматического выключателя. На левой грани РММ-47 есть выступающий штырь для механической связи расцепителя с приводом силовых контактов автоматов и выключателей нагрузки.

Защиты минимального и максимального напряжения

Этим и обусловлен принцип работы расцепителя РММ-47:

  • Электронная плата управления анализирует действующее напряжение в сети и сравнивает значение с установленными производителем настройками.
  • В случае отклонения более допустимых норм она посылает управляющий сигнал на соленоид, который в свою очередь механически связан с приводом для подключения автоматического выключателя.
  • Соответственно вместе со срабатыванием соленоида расцепителя отключится механически связанный с ним разъединитель. Чтобы вернуть аппараты в исходное состояние и подать энергию нужно нажать на кнопку «ВОЗВРАТ» и взвести флажок автоматического выключателя.

Следующее видео наглядно демонстрирует принцип монтажа подобных приставок для коммутационных защитных аппаратов:

Ступени срабатывания ЗМН

На практике применяются двухступенчатые системы защиты. Такой алгоритм работы позволяет разграничить реакцию ЗМН в зависимости от напряжения. Рассмотрим работу степеней срабатывания.

Данная ступень защиты активируется при напряжении 70% от номинальной величины (U ном), временная задержка срабатывания устанавливается в диапазоне 0,5-1,5 сек, что соответствует параметрам токовых отсечек АВ. При срабатывании 1-й ступени защиты производится отключение неответсвенного оборудования.

Ее срабатывание происходит при падении напряжения до 50% от номинала. При таких условиях автозапуск электродвигателей невозможен. Задержка активации 2-й ступени устанавливается в диапазоне 10,0-15,0 сек, после чего производится отключение ответственных двигателей. Такое время устанавливается, чтобы дать возможность автоматике подключить резервный источник питания или снизить оперативные токи путем отключения неответственного оборудования.

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Устройство и принцип работы

Структурная схема состоит из двух основных функциональных блоков:

  • электронного блока;
  • исполнительного устройства.

Задача электронной схемы заключаются в осуществлении контроля параметров сетевого электропитания и формировании управляющих команд исполнительному устройству. Блок электроники реле может быть построен на основе различной элементной базы. Но основой является компаратор напряжения, осуществляющий постоянное сравнение параметров сети с некоторой эталонной величиной. Компаратор создаётся на основе специализированных интегральных микросхем.

Защиты минимального и максимального напряжения

Различные варианты исполнения: от переносных до стационарных.

Другой, более современный подход к конструированию схемотехники электронных блоков заключается в том, что функции компаратора выполняет микропроцессорный программируемый микроконтроллер. Исполнительный орган реле контроля производит непосредственную коммутацию нагрузки, то есть, по команде электронного блока либо отключает её от электросети, либо вновь подключает.

Роль такого органа в большинстве конструкций выполняет электромагнитное реле. В типовых схемах реле напряжения используются нормально открытые контакты исполнительного реле.

Таким образом, чтобы отключить нагрузку, электронный блок обесточивает катушку исполнительного реле, а чтобы вновь подключить – подаёт на неё напряжение.

Защиты минимального и максимального напряжения

Органы управления и габариты на примере РН-111.

На фото: — Зеленый светодиод «СЕТЬ». — Зеленый светодиод «ВКЛ.НАГРУЗКИ». — Ручка установки порога срабатывания по минимальному напряжению (Umin(В)). — Ручка установки времени АПВ (Твкл(сек)). — Установка порога срабатывания по максимальному напряжению (Umax(В)). — Входные контакты. — Выходные контакты.

С помощью органов настройки реле, обычно располагающихся на передней панели прибора, пользователем производится установка верхнего и нижнего пределов допустимого диапазона изменения рабочих параметров. При выходе величины питающего напряжения за пределы установленного диапазона, электронный блок подаёт команду силовому исполнительному органу, в результате чего происходит отключение защищаемой нагрузки.

Повторная подача электропитания осуществляется автоматически, после возврата контролируемого сетевого параметра в границы заданного диапазона.

Онлайн журнал электрика

Защита малого напряжения исключает возможность самозапуска электродвигателя либо работы его при резко пониженном напряжении сети. Эту защиту именуют время от времени нулевой.

У движков неизменного тока параллельного возбуждения и асинхронных движков при понижении напряжения миниатюризируется магнитный поток и пропорциональный ему крутящий момент, что приводит к перегрузке мотора и его перегреву. Это уменьшает срок службы мотора и может быть предпосылкой выхода его из строя. Не считая того, при работе с пониженным напряжением движок, потребляя увеличенный ток, наращивает падение напряжения в сети и усугубляет работу других потребителей.

Самозапуск (самопроизвольный пуск, происходящий при восстановлении напряжения после его исчезновения либо при включении общего рубильника станка магистрали и т. д.) для движков большинства устройств промышленных компаний недопустим по условиям безопасности обслуживающего персонала, из-за угрозы поломки механизма, вследствие вероятного брака продукции и по ряду других обстоятельств. Потому при значимом понижении напряжения в сети либо его исчезновении движки, обычно, должны автоматом отключаться специальной защитой малого напряжения.

Защита малого напряжения (нулевая защита) в схемах контакторно-релейного управления движками осуществляется линейными контакторами, электрическими пускателями либо особыми реле малого напряжения.

К примеру, в схемах дистанционного управления с клавишами «пуск» и «стоп» при питании цепей управления и основных цепей от общего источника защиту малого напряжения делает электрический пускатель. В схемах управления крановыми движками — линейный контактор.

Напряжение отпускания пускателей и контакторов составляет около 40 — 50% от номинального напряжения катушки, потому при значимом понижении либо полном исчезновении напряжения в сети пускатель либо контактор выпадает, отключая главными контактами движок от сети.

Сразу размыкается его контакт, шунтирующий кнопку подачи команды «пуск», что исключает возможность самопроизвольного срабатывания магнитного пускателя и включение мотора после восстановления напряжения. Повторный запуск мотора в данном случае вероятен только после повторного нажатия на кнопку «пуск», т. е. только по команде рабочего, обслуживающего механизм.

В схеме автоматического управления, где пускатели движков врубаются не клавишами, а разными элементами автоматики, работающими без роли оператора, защита малого напряжения производится особым реле малого напряжения. При понижении либо исчезновении напряжения реле малого напряжения отключается, разрывает цепи и тем самым выключает все аппараты схемы управления.

Популярные статьи  Простой терморегулятор своими руками

Если подача команд осуществляется командоконтроллером либо ключом управления с фиксированными положениями ручки, защита малого напряжения также осуществляется особым реле, обмотка которого врубается через размыкающий контакт командоконтроллера, замкнутый только при положении ручки на нуле и разомкнутый во всех других положениях. Контакты всех видов защит, действующих на полное отключение установки, врубаются поочередно в цепь обмотки реле малого напряжения.

Защита малого напряжения может быть выполнена автоматическими выключателями (автоматами) с расцепителем малого напряжения, разрешающим включение автомата при напряжении сети не ниже 80 % от номинального и автоматом отключающим включенный автомат при исчезновении напряжения либо понижении его до 50% от номинального.

Расцепитель малого напряжения может быть применен для дистанционного отключения автомата, зачем в цепь его обмотки нужно включить размыкающий контакт кнопки либо другого аппарата. Некие автоматы изготовляются со специальной обмоткой отключения, выключающей автомат при включении ее под напряжение.

Школа для электрика

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.

Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.

Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.

Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:

  • Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
  • Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).

Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.

Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.

Устройство и принцип работы

Реагирующий орган системы — реле, контролирующее минимальное напряжение. Реле подключено к секционному трансформатору напряжения. В состав защиты входит также реле времени, указательное реле, сигнализирующее о срабатывании защиты, промежуточные реле.

Защиты минимального и максимального напряжения

Назначение, которое имеет защита, реагирующая на минимальное напряжение – отключение двигателей менее ответственных механизмов для обеспечения успешного самозапуска более важных.

Чтобы понять, что это значит и для чего нужна защита, рассмотрим ее принцип действия на тепловых электростанциях. Электродвигатели механизмов каждого котлоагрегата подключены к своей секции собственных нужд станции. Каждая секция имеет рабочий ввод питания от своего трансформатора собственных нужд. Кроме этого, секции связаны между собой секционным выключателем. Нормальной считается схема, когда секции питаются от вводов трансформаторов собственных нужд, секционный выключатель при этом отключен. Представим ситуацию, когда исчезает напряжение на вводе питания секции (например, в результате повреждения трансформатора собственных нужд). Рабочий ввод отключается, срабатывает АВР (автоматика включения резерва), включающая секционный выключатель. После чего питание секции осуществляется от другого трансформатора собственных нужд, через секционный выключатель. Минимальное время работы АВР складывается из задержки в системе, контролирующей напряжение рабочего ввода, времени срабатывания промежуточных реле, времени отключения и включения выключателей рабочего и резервного вводов. За это время происходит торможение электродвигателей, питающихся от секции.

Советуем изучить — Режимы работы электродвигателей

После подачи питания начинается групповой самозапуск электродвигателей, присоединенных к секции. При этом, в зависимости от глубины произошедшего торможения имеет место посадка (снижение) напряжения в большей или меньшей степени.

Примечание. При запуске котлоагрегата в штатном режиме, включение механизмов происходит последовательно с большими промежутками времени. Поэтому, при одновременном запуске (пусть даже не до конца заторможенных) механизмов, суммарное значение пускового тока существенно превышает номинальный ток питающего ТСН. Это может вызвать глубокую посадку напряжения на секции.

Защита, реагирующая на минимальное напряжение, имеет две ступени. Срабатывание первой ступени происходит, если снижение достигает отметки 0,7*Uн с выдержкой времени 0,5 с. Вторая ступень имеет уставку 0,5*Uн и время срабатывания до 9 с. Если за время бестоковой паузы произошло минимальное торможение механизмов и напряжение не достигло 70% номинального, самозапуск всех электродвигателей секции проходит успешно, котел продолжает работать.

Если напряжение снижается до 70% и ниже, на время 0,5 секунд, защитная аппаратура запускает первую ступень. Отключаются наименее важные для работы котла механизмы. Это делается для предотвращения дальнейшего снижения напряжения, чтобы дать возможность запуститься ответственным механизмам.

Вывод. Принцип работы первой ступени защиты минимального напряжения служит с целью удержать котлоагрегат в работе путем отключения механизмов, имеющих второстепенное значение.

Дальнейшее снижение напряжения (после работы 1-й ступени защиты) и достижение его уровня 50% номинала на время до 9 секунд означает, что самозапуск ответственных механизмов котла не удался. На этом этапе вопрос о работе котла уже не стоит. Включается схема работы второй ступени. Отключаются оставшиеся механизмы, подключенные к цепям защиты. Остаются только те агрегаты, отключение которых может привести к аварийной ситуации при останове котла. Например, во избежание взрыва угольной пыли в топке котла, недопустимо отключение дымососа.

Вывод. Принцип работы второй ступени защиты преследует цель вывести котел в режим безопасного гашения и останова.

Ступени срабатывания ЗМН

1-ая ступень

Система срабатывает при снижении напряжения до 70 % от номинального значения и с временной выдержкой полсекунды.

При включении первой ступени защиты, отключаются менее важные для производства электродвигатели. Предотвращается дальнейшее снижение одного из главных параметров, обеспечивающего возможность самозапуска главных механизмов.

2-ая ступень

Следующая ступень срабатывает после работы первой ступени. Уставка второй имеет 50 % от номинального значения разности потенциалов, время срабатывания девять секунд.

Самозапуск главных электродвигателей не происходит, отключаются оставшиеся механизмы, подключенные к цепи защиты, но поддерживается работа агрегатов, отключение которых приведет к аварийной ситуации. Вторая ступень обеспечивает режим безопасного торможения и остановки.

Защиты минимального и максимального напряжения

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Популярные статьи  Штроборез своими руками – что это такое, пошаговая инструкция

Схема ЗМН

Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.

Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.

Дополнительно в состав змн входят реле:

  • Времени, обеспечивающее последовательность работы в электрической схеме.
  • Промежуточное, коммутирующее управляющие сигналы.
  • Указательное, которое сигнализирует о срабатывании защиты.
  • Минимального напряжения.

Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.

При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.

При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.

ЗМН могут работать автономно или совместно с токовыми защитами.

Защиты минимального и максимального напряжения

Примеры и описание схем МТЗ

Для защиты разных компонентов сетей с питанием, поступающим с одной стороны, используются схемы различных типов.

Однорелейная на оперативном токе

Защиты минимального и максимального напряжения
Схема с одним реле на оперативном токе Применяется реле пуска, реагирующее на изменения разности фазовых потенциалов. Плюсами являются ее простота и малый расход ресурсов – нужны только одно реле и два кабеля. Минусы – невысокая восприимчивость и то, что, если отказал какой-то элемент, фрагмент линии теряет предохранение. Схема подойдет для сетей с напряжением до 10 кВ.

Двухрелейная на оперативном токе

Защиты минимального и максимального напряжения
Схема с парой реле

Эта схема, как и предыдущая, защищает электролинии от последствий короткого замыкания между фазами. Цепи в ней формируют усеченную звезду. Она надежна, но, как и предыдущая, не очень чувствительна.

Трехрелейная

Это наиболее надежная и единственная подходящая для конструкций с заземленной наглухо нейтралью схема.

Хотя отсечка тока эффективнее предотвращает короткие замыкания, применение обозреваемого метода больше подходит для предохранения разветвленных электролиний. Для максимально эффективной работы необходимо правильно задать в схеме уставки.

Типы реле контроля напряжения

РКН различают по типам подключения:

По форме вилки и розетки. Вилка упрощает процесс установки. Такой монтаж защищает только 1 потребителя, что крайне неудобно. Наличие микроконтроллера позволяет производить контроль нагрузок сети, выводя данные. Чтобы настроить значения нагрузки в заданных пределах используют кнопки, находящиеся на корпусе устройства.

Защиты минимального и максимального напряжения

По типу удлинителя. Устройство имеет микроконтроллер, контролирующий скачки напряжения. Наличие нескольких розеток позволяет подключать несколько оборудований одновременно.

Защиты минимального и максимального напряжения

Защиты минимального и максимального напряжения

Исходя из типов нагрузки ККН, делят на:

  • однофазные;
  • трехфазные.

Однофазные применимы как для защиты бытовой техники от скачков. Трехфазные контролируют полноту фаз. Когда на входе имеется 3 фазы, возможно подключение трехфазного реле. Когда одна фаза пропадает, другие две автоматически отключаются. Незначительное колебание или перекос способствует работе реле.

При нормальных показателях РКН не влияет на работу устройства. Рекомендовано приобретать отдельное реле для каждой фазы с трехвходными фазами изначально.

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Технические особенности серии «ТОР 100»

Серия состоит из нескольких типоисполнений различного назначения, выполненных на унифицированной аппаратной платформе, что обеспечивает удобство в эксплуатации и проектировании. Реле имеют порт связи и могут быть интегрированы в систему АСУ ТП предприятия по различным интерфейсам связи. Реле применяются в схемах вторичной коммутации для использования в качестве основных и резервных защит энергообъектов напряжением 0,4 кВ и выше и рекомендуются для применения на всех объектах энергохозяйства. Малые габариты и высокая функциональность устройств обеспечивают эффективное решение в части выполнения системы защит большинства присоединений 0,4- 35 кВ. Устройства взаимозаменяемы как в части аппаратной базы, так и в части программного обеспечения. Терминалы выполнены на микропроцессорной базе и обеспечивают высокие технические показатели защит, стабильность характеристик, высокую функциональность и информативность, а также удобство при монтаже и обслуживании при минимуме эксплуатационных затрат. Реле имеют источник питания, входные измерительные трансформаторы, измерительные органы, выдержки времени и выходные реле для действия на отключение и сигнализацию. Имеются сигнальные светодиоды, дисплей и кнопки для сигнализации действия защит и выставления уставок. Устройства серии «ТОР 100» могут устанавливаться в релейных отсеках ячеек КРУ, КРУН, камер КСО, в шкафах и панелях на щитах управления. Устройство совместимо с различными типами выключателей (маломасляных, вакуумных, элегазовых). Возможно изготовление устройств по индивидуальным требованиям Заказчика для нестандартных применений. Универсальная база реле позволяет в короткие сроки разработать устройства защиты и автоматики для замены традиционного электромеханического оборудования, а также специфические изделия по известным или новым алгоритмам.

Советуем изучить — Как работают устройства автоматики повторного включения (АПВ) в электрических сетях

ЛИТЕРАТУРА

  1. Абзалов Р.Ф. и др. »Электрооборудование и электроснабжение горных предприятий», М. Недра; 1977.
  2. Авсеев Г.М., Алексеенко А.Ф., Гармаш И.Л. Сборник задач по горной электротехнике – М.: Недра, 1988.
  3. Беккер Р.Г., Дектярев Б.В. и др. Электрооборудование и электроснабжение участка шахты. Справочник – М.: Недра, 1983.
  4. Бородино Л.С. Горная электротехника – М.: Недра, 1981.
  5. Груба В.И., Калинин В.В., Макаров М.И. Монтаж и эксплуатация электроустановок – М.: Недра, 1991.
  6. Гурин Н.А., Янукович Г.И. »Электрооборудование промышленных предприятий и установок. Пособие по дипломному проектированию», Минск, Высшая школа; 1990.
  7. Дзюбан В.С., Риман Я.С., Маслий А.К. Справочник энергетика угольной шахты – М.: Недра, 1983.
  8. Дзюбан В.С. Пархоменко А.И. и др. Справочник по взрывозащитному оборудованию. – К.: Техника, 1990.
  9. Колосюк В.П. Техника безопасности при эксплуатации рудничных электроустановок – М.: Недра, 1987.
  10. Конюхова Е.С. Электроснабжение объектов. М, Энергоатомиздат, 2001
  11. Липкин Б.Ю. » Электроснабжение промышленных предприятий и установок», М. Высшая школа; 1990.
  12. Медведев Г.Д. »Электрооборудование и электроснабжение горных предприятий», М. Недра; 1988.
  13. Назаров А.И., »Методическое пособие по расчету и выбору аппаратов управления и защиты до 1000 В.», Кострома; 1999.
  14. Назаров А.И. Основы проектирования электроснабжения предприятий и установок. Кострома, 2000.
  15. Назаров А.И. Электрическое оборудование напряжением выше 1000 В., Кострома, 2000.
  16. Назаров А.И. Выбор электрического оборудования. Справочное пособие, Кировск, 2004.
  17. Правила безопасности в угольных и сланцевых шахтах – М.: Недра, 1978.
  18. Правила устройства электроустановок, М., Энергоатомиздат, 2002.
  19. Правила технической эксплуатации электроустановок потребителей, М., Энергоатомиэдат, 2003.
  20. Сибикин Ю.Д. »Справочник молодого рабочего по эксплуатации электроустановок промышленных предприятий», М. Высшая школа; 1992.
  21. Цапенко Е.Ф., Мирский М.И., Сухарев О.В. Горная электротехника – М.: Недра, 1986.

Раздел 2. РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА В ЭЛЕКТРОУСТАНОВКАХ

Схемы защиты МТЗ

Применяется несколько вариантов конструкций, различающихся устройством.

Трехфазная схема защиты МТЗ на постоянном оперативном токе

Защиты минимального и максимального напряжения
Трехфазная конструкция

В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.

Двухфазные схемы защиты МТЗ на постоянном оперативном токе

Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.

Двухрелейная схема

Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.

Популярные статьи  Как разобрать выключатель света?

Одно-релейная схема МТЗ

Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.

Реле напряжения РН-113 1-ф 32А,2-конт.3 мод.220-280В,три задержки до 900сек.Новатек РН-113

Реле напряжения РН-113 Новатек-Электро однофазное, 160-280В, 32А, 7200ВА, 5-900сек

  • с индикатором действующих значений входного напряжения
  • минимальное и максимальное допустимое напряжение устанавливается пользователем
  • время включения устанавливается пользователем (5-900с)

Реле контроля напряжения РН-113 предназначено для отключения бытовой и промышленной 1-фазной нагрузки при недопустимых колебаниях напряжении. При нормализации параметров сети происходит автоматическое включение нагрузки. Время задержки автоматического включения задается пользователем.

Реле напряжения РН-113 Новатек-Электро, особенности модели:

При мощности нагрузки до 7,0 кВт (ток до 32 А) отключение питания производится самим реле РН-113, выходные контакты которого включены в разрыв питания нагрузки.

При мощности, превышающей 7,0 кВт (ток более 32 А), отключение производится магнитным пускателем соответствующей мощности, в разрыв питания катушки которого включены выходные контакты РН-113 (МП в комплект поставки не входит).

Управление и габаритные размеры:

Защиты минимального и максимального напряжения

1, 14 – незадействованные контакты; 2, 13 – входные контакты для подключения питания изделия; 3 – трехразрядный семисегментный индикатор (далее по тексту индикатор); 4 – ручка установки порога срабатывания изделия по минимальному напряжению (Umin (В)); 5 – ручка установки порога срабатывания изделия по максимальному напряжению (Umax(В)); 6 – 8 – выходные контакты для подключения нагрузки; 9 – ручка установки времени АПВ (Твкл(с)); 10 – переключатель контроля минимального напряжения (Umin); 11 – переключатель контроля максимального напряжения (Umax); 12 – светодиод включения нагрузки (ВКЛ. НАГРУЗКИ).

Технические характеристики:

  • Номинальное напряжение: 230В
  • Частота сети: 48-52 Гц
  • Диапазон регулирования: мин. 160-220В макс. 230-280В
  • Диапазон регулирования времени включения: 5-900сек
  • Фиксированное время срабатывания: по Uмакс. 1 сек. по Uмин. 12 сек
  • Фиксированное время срабатывания при повышении напряжения более 30В от порога по Umах или выше 300В: 0,12 сек
  • Максимальный коммутируемый ток (активная нагрузка) 32А
  • Диапазон напряжений, в котором сохраняется работоспособность устройства: 100….420В
  • Мощность потребления (при неподключенной нагрузке) до 3,5В
  • Размер: 3 модуля
  • Монтаж: на DIN-рейку 35мм
  • Масса не более 0,15кг
  • Выходные контакты (cos φ=1):
  • макс. ток при U ~ 250В: 32А
  • мак. мощность 7200ВА
  • максимально допустимое напряжение переменное / постоянное : 250 / 110В
  • макс. ток при Uпост. 14В: 30А

Реле напряжения РН-113 1-ф 32А,2-конт.3 мод.220-280В,три задержки до 900сек.Новатек Изображения и характеристики данного товара, в том числе цвет, могут отличаться от реального внешнего вида. Комплектация и габариты товара могут быть изменены производителем без предварительного уведомления. Описание на данной странице не является публичной офертой.

Система АВР

При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.

При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.

Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.

Защита минимального напряжения принцип работы — Все об электричестве

Защиты минимального и максимального напряжения

Защита минимального напряжения (далее по тексту ЗМН) используется совместно с другими системами, контролирующими состояние электросети. Основная задача такой защиты – обеспечить работу ответственного оборудования при кратковременных понижениях напряжения. Узнать, как осуществляется этот процесс, можно прочитав о принципе работы ЗМН, ее устройстве и сфере применения. Всю эту информацию Вы найдете в нашей статье.

Кратко о назначении

Как известно, при снижении напряжения питания асинхронных двигателей уменьшается уровень магнитного потока, а, следовательно, и крутящего момента. При этом увеличивается потребление тока, ведущее к снижению уровня напряжения в электросети, что отражается на работе других устройств, подключенных к ней.

Помимо этого не следует забывать о стартовых токах, образующихся при запуске двигателей

ЗМН производит отключение менее важного оборудования, чтобы обеспечить процесс самозапуска ответственных двигателей, при восстановлении параметров электросети. Если автозапуск ответственных электродвигателей не отвечает нормам ТБ или не предполагается условиями техпроцесса, то реле минимального напряжения устанавливается и на это оборудование

Когда параметры сети не соответствуют минимальному напряжению, то ЗМН производит отключение оборудования и/или подает соответствующий сигнал системе управления или оператору, это может происходить в следующих случаях:

  • При фазном или межфазном коротком замыкании. В этом случае происходит резкое превышение номинального тока, что провоцирует падение напряжения ниже допустимого уровня. Если срабатывают при этом токовые реле, то произойдет полное исчезновение напряжения.
  • Существенное превышение номинальной мощности, что также приводит к падению в питающих цепях напряжения.

Защита производит отключение питания оборудования, не относящегося к категории высокой важности. Это позволяет произвести нормальный автозапуск ответственных электромашин при высоких пусковых токах, в противном случае может произойти ложное срабатывание релейных защит

Принцип работы защиты минимального напряжения

Вне зависимости от сферы применения ЗМН, ее принцип действия остается неизменным. Объясним алгоритм работы защиты на примере произвольного объекта, где для производственного процесса используется несколько электродвигателей и подключено оборудование собственных нужд. Допустим, на линии питающей объект произошло КЗ, вызвавшее срабатывание выключателя ввода (токовая защита). После завершения ремонтных работ и восстановления питания происходят следующие действия:

  1. Автозапуск двигателей, что приводит к появлению высоких пусковых токов, и, соответственно, к снижению напряжения в сети.
  2. Контакты реле защиты производят отключение неответственных механизмов, то есть оборудования, не принимающего участие в производственном процессе или простой которого не критичен для технологического цикла. Это приводит к нормализации тока и повышению напряжения до номинального уровня, что позволяет произвести штатный автозапуск основных узлов.

Устройство и схема ЗМН

Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.

Пример двухступенчатой ЗМН

Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.

Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении U ном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.

Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5U ном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: