Задача и особенности заземления трансформаторов.

ВВЕДЕНИЕ

Режим нейтрали распределительных электрических сетей напряжением 6—20 кВ (РЭС) в течение многих лет был и остался предметом многочисленных публикаций и дискуссий .

Особенностью РЭС, включая городские электрические сети, является наличие у применяемого в них оборудования достаточно большого запаса электрической прочности фазной изоляции (относительно земли), допускающего работу с увеличенным фазным напряжением до номинального линейного. По этой причине нормативные материалы предписывают использовать режим изолированной нейтрали (I-режим) для таких сетей в качестве основного. Данный режим получил исключительно широкое распространение, так как может допускать работу сети с однофазным замыканием на землю (ОЗЗ) в течение времени, достаточного для поиска повреждённого участка, подачи резервного питания на электроприёмники или их отключения вручную.

В сетях с большой ёмкостью фаз в соответствии с осуществляется компенсация тока ОЗЗ с помощью дугогасящих реакторов, имеющих в ряде случаев автоматическую резонансную настройку на ёмкость сети. Данный режим наряду с режимом изолированной нейтрали в нашей стране является основным.

Анализ опыта эксплуатации сетей с изолированной нейтралью и компенсацией ёмкостных токов замыкания на землю, проведённый многими авторами, показывает, что удельная повреждаемость элементов РЭС достаточно велика. Это объясняет причину поиска новых режимов нейтрали РЭС, включая работу сети с изменяемым при ОЗЗ режимом нейтрали.

Наибольшее распространение во многих странах получили новые режимы работы сети: с высокоомным (RB-режим) и низкоомным (RН-режим) рези-стивными заземлениями нейтрали, снижающими перенапряжения при ОЗЗ. При этом заземление принято считать высокоомным, если ток в элементе, заземляющем нейтраль, при ОЗЗ близок по модулю к ёмкостному току замыкания на землю, а низкоомным — если ток в указанном элементе в тех же условиях достаточен для срабатывания простейших токовых защит от ОЗЗ. Следует отметить, что заземление нейтрали с помощью дугогасящего реактора по аналогии с резистивным заземлением можно назвать высокоомным индуктивным заземлением (LB-режим).

Наряду с этим в некоторых странах используется режим комбинированного (LB — RB-режим), а также низкоомного индуктивного (LH-режим) и эффективного заземления нейтрали (G-режим). Следует отметить, что низкоомные резистивное и индуктивное заземления нейтрали, как правило, являются кратковременными режимами, в которые сеть переходит либо на время отключения ОЗЗ, либо на время селективного определения места повреждения, в то время как высокоомные заземления, включая LB — RB-режим, являются длительными, в которых сеть может работать постоянно.

Технические решения по резистивному заземлению нейтрали не всегда обеспечивают повышение эффективности функционирования кабельной сети. В частности, при высокоомном резистивном заземлении нейтрали (RB-режим), как отмечено в , повторные пробои изоляции возникают более часто, чем в LB-режиме. Использование режима низкоомного резистивного заземления нейтрали (RH-режим) связано с дополнительными капиталовложениями в средства релейной защиты, т.к. необходима установка специальных чувствительных защит от замыканий на землю. Кроме того, после отключения замыкания на землю затруднён быстрый поиск места повреждения, так как промышленные указатели тока короткого замыкания не реагируют на токи ОЗЗ при низкоомном резистивном заземлении нейтрали.

Повышенные перенапряжения при ОЗЗ могут быть снижены не только путём применения специального режима нейтрали, но и с помощью быстродействующего автоматического шунтирования (заземления) повреждённой фазы (АЗФ), однако в настоящее время в РФ этот вид автоматики практически не применяется. Одной из причин этого является несовместимость АЗФ с изолированной нейтралью и с компенсацией ёмкостных токов при ОЗЗ, обоснованная в .

В научно-технической литературе приведены различные варианты режимов нейтрали с анализом их достоинств и недостатков, однако появившиеся в последние годы публикации, посвящённые данной проблеме, объясняют необходимость дополнительного рассмотрения вопроса низкоомного заземления нейтрали, что является целью этой статьи.

Начнем с классификации

Как и любой электроприбор, подобрать трансформатор можно по параметрам и установочным характеристикам:

  • Назначение: измерительный, управляющие и лабораторные. Нас интересует, как подключить измерительный вариант.
  • Номинальное напряжение первичной обмотки, один из основных параметров: до 1000 В или свыше 1000 В.
  • Конструкция первичной обмотки. Одновитковые, многовитковые, стержневые, шинные, катушечные. От конструкции первички зависит способ монтажа.
  • Способ установки: трансформаторы могут встраиваться в электроустановку, накладываться на силовые шины, монтироваться в распределительные шкафы или трансформаторные подстанции. Кроме того, существуют переносные приборы для организации контроля или временного учета электроэнергии.
  • Тип монтажа: в зависимости от выбранного способа установки и подключения, монтаж может быть проходным или опорным. На иллюстрации проходной тип монтажа.
  • Количество ступеней трансформации. При работе с высоким напряжением, может потребоваться каскадное снижение выходных параметров. При этом можно выбирать, куда подключать измерительные (управляющие) приборы: на один или несколько каскадов трансформации.
  • Тип изоляции между обмотками и сердечником. Как и в обычных трансформаторах: сухая (керамика, бакелит, некоторые виды пластмасс) или мокрая (классическая бумажно-маслянная). Современные компактные трансформаторы заливаются компаундом. Параметр учитывается при выборе температурного режима эксплуатации: высокий нагрев или наружная установка при минусовых температурах.

Устройство заземления своими руками: поэтапная инструкция

Если Вы задаетесь вопросом: «как сделать заземление на даче?», то для выполнения данного процесса потребуется следующий инструмент:

  • сварочный аппарат или инвертер для сварки металлопроката и вывода контура на фундамент здания;
  • угловая шлифмашинка (болгарка) для разрезания металла на заданные куски;
  • гаечные глючи для болтов с гайками М12 или М14;
  • штыковая и подборная лопаты для рытья и закапывания траншей;
  • кувалда для вбивания электродов в землю;
  • перфоратор для разбивания камней, которые могут встречаться при рытье траншей.

Чтоб правильно и согласно нормативным требованиям выполнить контур заземления в частном доме нам потребуются следующие материалы:

  1. Уголок 50х50х5 — 9 м (3 отрезка по 3 метра).

2. Сталь полосовая 40х4 (толщина металла 4 мм и ширина изделия 40 мм) — 12 м в случае вывода одной точки заземлителя на фундамент здания. Если же Вы хотите выполнить контур заземления по всему фундаменту к указанному количеству добавьте общий периметр здания и еще возьмите запас для подрезки.

3. Болт М12 (М14) с 2 шайбами и 2-я гайками.

4. Медный заземлитель. Может быть использована заземляющая жила 3-х жильного кабеля либо провод ПВ-3 с сечением 6–10 мм².

Задача и особенности заземления трансформаторов.

После того как все необходимые материалы и инструменты есть в наличии можно переходить непосредственно к монтажным работам, которые детально расписаны в следующих главах.

Выбор места для монтажа контура заземления

В большинстве случаев рекомендуется монтировать контур заземления на расстоянии в 1 м от фундамента здания в месте где оно будет скрыто от человеческого глаза и к которому будет сложно добраться как людям, так и животным.

Популярные статьи  Стабилизатор напряжения Ресанта

Такие меры необходимы для того, что при повреждении изоляции в электропроводке потенциал будет идти на контур заземления и может возникнуть шаговое напряжение, которое может привести к электротравме.

Выполнение земляных работ

Задача и особенности заземления трансформаторов.

После того как было выбрано место, выполнена разметка (под треугольник со сторонами 3 м), определено место вывода полосы с болтами на фундамент здания можно приступать к земляным работам.

Для этого необходимо с помощью штыковой лопаты по периметру размеченного треугольника со сторонами по 3 м снять слой земли в 30–50 см. Это необходимо для того, чтоб в дальнейшем без особых трудностей к заземлителям приварить полосовой металл.

Также стоит дополнительно прокопать траншею такой же глубины для подвода полосы к зданию и выводу ее на фасад.

Забивание заземлителей

После подготовки траншеи можно приступать к монтажу электродов контура заземления. Для этого предварительно с помощью болгарки необходимо заточить края уголка 50х50х5 или круглой стали диаметром 16 (18) мм².

Далее выставить их в вершины полученного треугольника и с помощью кувалды забить в землю на глубину 3 м

Также важно чтоб верхние части заземлителей (электродов) находились на уровне выкопанной траншеи чтоб к ним можно было приварить полосу

Сварные работы

Задача и особенности заземления трансформаторов.

После того как электроды будут забиты на необходимую глубину с помощью стальной полосы 40х4 мм необходимо сварить между собой заземлители и вывести данную полосу на фундамент здания где будет подключен заземляющий проводник дома, дачи или коттеджа.

Там, где полоса будет выходить на фундамент на высоте 0.3–1 мот земли, необходимо приварить болт М12 (М14) к которому в дальнейшем будет подключено заземления дома.

Обратная засыпка

Задача и особенности заземления трансформаторов.

После выполнения всех сварных работ полученную траншею можно засыпать. Однако перед этим рекомендуется залить траншею соляным раствором в пропорции 2–3 пачки соли на ведро воды.

После полученную почву необходимо хорошо утрамбовать.

Проверка контура заземления

Задача и особенности заземления трансформаторов.

После выполнения всех монтажных работ возникает вопрос «как проверить заземление в частном доме?». Для этих целей конечно обычный мультиметр не подойдет, поскольку у него очень большая погрешность.

Для выполнения данного мероприятия подойдут приборы Ф4103-М1, Клещи Fluke 1630, 1620 ER и так далее.

Однако эти приборы очень дорогие, и если Вы выполняете заземление на даче своими руками, то для проверки контура Вам будет достаточно обычной лампочки на 150–200 Вт. Для данной проверки Вам необходимо один вывод патрона с лампочкой подключить к фазному проводу (обычно коричневого цвета) а второй — к контуру заземления.

Если лампочка будет ярко светить — все отлично и контур заземления полноценно функционирует, если же лампочка будет тускло светить или вообще не испускать световой поток — значит контур смонтирован неверно и нужно либо проверять сварные стыки или монтировать дополнительные электроды (что бывает при низкой электропроводимости почвы).

Заземление — вторичная обмотка — трансформатор

Заземление — вторичная обмотка — трансформатор

Заземление вторичной обмотки трансформатора не допускается.  

Проверяется правильность выполнения заземления вторичных обмоток трансформаторов тока. Каждая группа электрически соединенных вторичных обмоток трансформаторов тока, независимо от их числа, должна быть заземлена только в одной точке либо на панели защиты, либо на ближайшей к трансформаторам тока сборке зажимов. Проверяется возможность безопасного отсоединения и присоединения заземления без снятия высокого напряжения.  

При проверке этим методом заземления вторичных обмоток трансформаторов тока необходимо снять.  

Недостатком однофазных симметричных схем ( по сравнению с несимметричными) является невозможность одновременного заземления вторичной обмотки трансформатора и потребителя.  

Если к трансформатору напряжения, кроме счетчиков, присоединяются оперативные цепи защиты, то заземление вторичной обмотки трансформатора допускается устраивать через пробивной предохранитель.  

Для защиты обслуживающего персонала от поражения током при проникновении высокого напряжения в сеть низшего1 напряжения применяют заземление вторичных обмоток трансформаторов ( измерительных и силовых с вторичным напряжением до 525 в) непосредственно или через пробивной предохранитель.  

В сетях с большим током вамыкания на вемлю защита устанавливается на трех фазах. В этом случае трансформаторы тока на каждой линии соединяются по слеме полной звезды с нулевым проводом. Заземление вторичных обмоток трансформаторов тока, необходимое по условиям техники безопасности, устанавливается одно для трансформаторов тока обеих линий.  

Вторичная обмотка исключенного из схемы трансформатора тока должна быть пои этом закорочена, а миллиамперметр заменен амперметром. Если заземление вторичных обмоток трансформаторов тока выполнено у самих трансформаторов, то для получения суммы токов ДВУХ фаз в нейтральном проводе достаточно на входе панели защиты временно заземлить одну из фаз и отключить ее Трис. Получить достаточный для измерения миллиамперметром ток небаланса можно также путем включения в цепь одной фазы добавочного резистопа с сопротивлением 5 — 10 Ом.  

На панелях камер КСО и в релейных шкафах камер КРУ монтируют измерительные приборы, реле, аппараты защиты, сигнализации и управления. Прокладывают, разделывают и подключают силовые и контрольные кабели. Выполняют заземления вторичных обмоток трансформаторов тока, неиспользуемые вторичные обмотки закорачивают перемычками непосредственно на их выводах.  

Если мощность нагрузочного устройства не позволяет довести первичный ток до срабатывания защиты, то защита проверяется вторичным током. При этом способе ток от постороннего источника подается на выводы вторичных обмоток трансформаторов тока и значение его доводится до срабатывания защиты. Измеренный вторичный ток срабатывания реле защиты, пересчитанный для первичной стороны по коэффициенту трансформации трансформатора тока, должен соответствовать заданному уставкой первичному току срабатывания защиты с учетом тока намагничивания трансформаторов тока. При проверке этим методом заземления вторичных обмоток трансформаторов тока необходимо снять.  

Страницы:      1

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

    • Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:
    • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
    • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
    • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).
Популярные статьи  Влияние внешних факторов на работу автоматических выключателей

Задача и особенности заземления трансформаторов.

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Задача и особенности заземления трансформаторов.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия

При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения.

В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования. Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения. Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%.

Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

Однофазный двухобмоточный трансформатор представлен на рисунке, так, как он выглядит на самом деле.

На схемах он обозначается как:

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе

Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитопроводов: трехстержневые и пятистержневые.

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы. Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках. Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Конструкция ЗОН-110

Конструкция ЗОНа состоит из цилиндра, на которое крепится основание. Основание-это небольшая деталь в виде угла, на котором закреплена вся конструкция. К нему присоединен статический контакт с устройством, состоящим из трубы (в основном алюминиевая) на которую крепится круглая пластинка с валом. Такое устройство называется ножом заземления. Нож соединен с фазным проводом линии, который входит в фазу заземления вторым концом.

Давление всей установки устанавливается и регулируется стальной пружиной. Вентильные разрядники, устройства защищающие установку от перенапряжения. Берут весь удар на себя во время грозы. Внешний вид напоминает металлическую гусеницу. Включается ЗОН 110кВ между нулевой точкой напряжения и землёй, либо напрямую через трансформатор со вторичной обмоткой.

Заземление корпуса трансформатора

Почти каждое трансформаторное шасси корпуса изготовлено из металла, хотя некоторые маленькие – пластиковые. Если корпус металлический, на нем не должно быть напряжения. Цель трансформатора состоит в том, чтобы сохранить всю электрическую проводимость, содержащуюся в проводах вокруг катушек – никакое электричества не должно течь в железный сердечник или металлическое шасси, окружающее катушки.

Однако в случае неисправности из-за обрыва провода это шасси может быть под напряжением, и, если это произойдет, оно подключается к электрическому тракту с почти нулевым сопротивлением

Очень важно, чтобы металлический корпус трансформатора был прочно соединен с землей, а не только с проводкой первичной цепи

Правила для переносных установок

В некоторых ситуациях допускается отказ от местного заземлителя для электрооборудования, оснащенного автономными источниками питания с нейтралью, не вступающей в контакт с грунтом. Обычно переносное заземление используется для защиты установок, не питающих другое оборудование. При этом источники питания должны иметь собственные заземлители, а все элементы установки — стыковаться с корпусом источника электропитания.

Работы по заземлению мобильных электрических установок выполняют в соответствии с требованиями к напряжению или сопротивлению. Показатель сопротивления не должен превышать 25 Ом. Устройства с автономными источниками электропитания и изолированными нейтралями всегда контролируются по уровню сопротивления изоляции. Кроме того, нужно обеспечить постоянный доступ для проведения проверок работоспособности изоляции.

Задача и особенности заземления трансформаторов.

Переносные заземлительные установки монтируются во время перерывов в работе электрооборудования. Установка защиты начинается только после отключения напряжения в электросети. Заземление устанавливается на все отключенные фазы. Причем установка осуществляется со всех сторон, откуда подается напряжение.

К монтажу переносных систем в электрических установках с напряжением свыше 1000 вольт допускаются исключительно специалисты, обладающими группой электробезопасности не меньше четвертой. Для установок с напряжением менее 1000 вольт необходима третья или выше группа электробезопасности.

Создание внешнего контура

Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.

Задача и особенности заземления трансформаторов.

Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.

Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.

Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.

Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.

Подписка на рассылку

Заземление нейтрали трансформатора на трансформаторных подстанциях (рабочее и защитное) чаще всего выполняется вместе. Рабочее или «глухое» заземление нейтрали трансформатора выполняется для того, чтобы обеспечить нормальный рабочий режим. Кроме того, рабочее заземление трансформатора становится частью защитного заземления или зануления сети. Организация защитного заземления имеет целью повышение безопасности эксплуатации оборудования и людей, входящих с ним в соприкосновение в случаях повреждения изоляции кабелей под напряжением.

Рисунок 1. Заземление корпуса трансформатора В трансформаторных подстанциях (ТП) заземлять необходимо все металлические детали электрооборудования, номинально не пребывающие под напряжением (фланцы изоляторов, бак трансформатора, рамы выключателей нагрузки, приводов, сам корпус трансформатора тока и все остальное). Кроме того, заземление трансформатора предусматривает подключение к системе заземления всех опорных металлоконструкций, стальных каркасов и прочего. При этом заземление трансформаторов тока дополнительно предусматривает отдельное заземление их вторичных обмоток.

В качестве заземлителей применяются ввинчиваемые в землю стальные стержни диаметром не менее 12 мм. Их длина должна составлять не менее 4 м (для стальных уголков или труб — не менее 2,5 м). Горизонтальные заземлители лучше выполнять из полосовой стали толщиной от 4 мм. Оптимальная глубина закладки верхних концов для вертикальных заземлителей составляет около 0,8 м от уровня земли. Только при условии достаточно глубокой забивки заземляющих электродов заземление трансформатора будет надежным и полноценным.

Отдельно стоит отметить, что в отличие от трансформаторов напряжения, где заземляется только сам трансформатор, заземление трансформаторов тока должно подразумевать подсоединение к защитному контуру и их вторичных обмоток. При этом если есть несколько трансформаторов тока, допускается заземление их вторичных обмоток одним проводником.

Источник

Принцип действия сетей с глухозаземленной нейтралью

Теперь рассмотрим подробно, с какой целью заземляется нейтраль и как подобная реализация обеспечивает должный уровень электробезопасности, для этого перечислим обстоятельства, которые могут привести к поражению электротоком:

  • Непосредственное прикосновение к токоведущим элементам. В данном случае никакое заземление не поможет. Необходимо ограничивать доступ к таким участкам и быть внимательным при приближении к ним.
  • Образование зон с шаговым напряжением в результате аварий на ВЛ или других видах электрохозяйства.
  • Повреждения внутренней изоляции может привести к «пробою» на корпус электроустановки, то есть, на нем появляется опасное для жизни напряжение.
  • В результате нарушения электроизоляции токоведущих линий под напряжением могут оказаться кабельные каналы, короба и другие металлические конструкции, используемые при трассировке.

В идеале между нейтралью и землей разность потенциалов должна стремиться к нулю. Подключение к заземляющему контуру на вводе потребителя существенно способствует выполнению этого условия, в тех случаях, когда ТП находится на значительном удалении. При правильной организации заземления такая особенность может спасти человеческую жизнь, как минимум, в двух последних случаях из указанного выше списка.

Чтобы избежать пагубного воздействия электротока необходимо заземлять корпуса электроприборов, а также и других металлических частей электроустановок зданий. Это приведет к тому, что при «пробое» возникнет замыкание фазы на землю. В результате произойдет автоматическое отключение снабжения питанием электроприемников, вызванное срабатыванием устройства защиты от токов КЗ.

Даже если защита не сработает, а кто-либо прикоснется к металлическому элементу, все равно ток будет течь по заземляющему проводнику, поскольку в этой цепи будет меньшее сопротивление.

Задача и особенности заземления трансформаторов.
Движение тока при КЗ на корпус

Говоря о принципе работы защиты заземленной нейтрали нельзя не отметить быстрый выход в аварийный режим, когда один из фазных проводов замыкается на шину PEN. По сути, это КЗ на нейтраль, следствием которого является резкое возрастание тока, приводящее к защитному отключению энергоустановки или проблемного участка цепи.

При определенных условиях можно даже организовать защиту от образования опасных зон с шаговым напряжением. Для этого на пол в потенциально опасном помещении стелют (если необходимо, то замуровывают в бетон) металлическую сеть, подключенную к общему заземляющему контуру.

Функции ноля в линии электропередачи

В идеале при соединении обмоток «звездой» нулевой провод является проводником при соединении обмоток преобразователя и потребителей.

На практике нагрузка в сети редко бывает одинаковой на все фазы. Так как мощность преобразователя ограничена, при повышении нагрузки в какой-то фазе в ней сила тока падает, ноль смещается, образуется напряжение смещения. Этот показатель прямо пропорционален разнице в вольтаже между фазами. Часть потребителей получает повышенное напряжение, часть – пониженное.

Основное предназначение нулевого провода – сравнять силу тока в нейтрали на преобразователе подстанции с силой тока в нулевой точке потребителей.

При повышении силы тока в одной фазе оно возвращается в нулевую точку и перераспределяется на фазы с пониженным вольтажом.

В однофазной сети, используемой в жилых домах, требуется фаза и ноль. Нулевой провод уже заземлен, напряжения на нем нет.

Задача и особенности заземления трансформаторов.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: