Вещественное значение электрического поля
Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.
Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.
Особенности воздействия:
- Каждый электрический заряд создаёт вокруг себя электростатическое поле.
- Электрополем называется пространство, в котором действуют силы напряжения.
- Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.
Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:
- E =F /q (над E и F вектор).
- Единица напряжённости электростатического поля — 1 N/C.
Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.
Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.
Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.
Единицей измерения потенциала точки электрического поля является 1 В (вольт).
Как изобразить однородное электрическое поле
Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.
Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.
Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.
Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.
Рис. 18. Поле, расположенное в пространстве между двух заряженных плоскостей, будет однородным
Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.
Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.
Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).
Характеристики
Основными характеристиками являются:
- потенциал;
- напряжённость;
- напряжение.
Потенциал
Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.
Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.
Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.
Напряжённость поля
Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.
Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.
Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.
Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости
Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.
Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.
Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов
Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.
Для общего случая распределения зарядов имеем:
Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:
- электростатического;
- дипольного;
- системы и одноимённых зарядов;
- однородного поля.
Рис. 7. Линии напряжённости различных полей
Напряжение
Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.
Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.
Воздействие электрического поля на жизнь и здоровье человека
Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.
Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.
Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.
Еще рекомендую посмотреть лекцию профессора на тему “Электрическое поле”:
Как обнаружить электрическое поле
Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.
Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.
В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.
Рис. 5. Описание понятия пробного точечного заряда
Примечания:
- Некоторые живые существа могут чувствовать электрические поля, например, некоторые виды рыб.
- Электрическое поле можно обнаружить по его действию на заряды, а, так же, с помощью различных приборов.
- Поле заряда действует с некоторой силой на расположенный рядом другой заряд. То есть, заряды действуют друг на друга благодаря своим электрическим полям.
Примечание: Не следует путать пробный и элементарный заряд.
Взаимодействие заряженных тел
Привыкли считать устаревшие теории утопией, между тем мужи науки вовсе не глупые. Сегодня смешно звучит учение Франклина об электрической жидкости, видный физик Эпинус посвятил целый трактат. Закон Кулона открыт экспериментально на основе крутильных весов, аналогичными методами пользовался Георг Ом при выводе известного уравнения для участка цепи. Но что лежит за всем этим?
Должны признаться, электрическое поле попросту является очередной теорией, не уступающей франклиновой жидкости. Сегодня известно о субстанции два факта:
-
Постоянное электрическое поле существует вокруг заряженного тела. Наличествует два знака частиц, объекты могут притягиваться, отталкиваться. Учат в школе, нет смысла дополнительно здесь обсуждать вопрос. Напряженность поля показывает, в какую сторону будет действовать сила на положительно заряженную частицу – потому, является величиной векторной. Тело окружено линиями эквивалентности, в каждой точке которых направление уникальное. Для точечного заряда расходятся лучами в стороны. Направление определено знаком: векторы стремятся прочь от положительного.
- Электрическое поле изменяется во времени, пространстве. Согласно уравнениям Максвелла, порождает магнитное, описываемое аналогичным законом. Векторы полей лежат во взаимно перпендикулярных плоскостях, существуют в тесной взаимосвязи. Электромагнитная волна, повсеместно используемая в быту, технике для передачи информации посредством эфира.
Изложенные факты заложили базис современного представления о взаимодействиях в природе, выступают опорой теории близкодействия. Помимо нее учеными выдвигались другие предположения о сути наблюдаемого явления. Теория близкодействия подразумевает мгновенное распространение сил без участия эфира. Поскольку явления пощупать труднее, нежели электрическое поле, многие философы окрестили подобные взгляды идеалистическими. В нашей стране они успешно критиковались советской властью, поскольку, как известно, большевики недолюбливали Бога, клевали по каждому удобному случаю идею существования чего-либо, “зависимого от наших представлений и поступков” (попутно изучая сверхвозможности Джуны).
Франклин объяснял положительные, отрицательные заряды тел избытком, недостаточностью электрической жидкости.
Напряженность
Это одна из характеристик электрического поля. Напряженность применяется в том случае, когда требуется определить «количество» такого явления в определенном месте. Представить себе это достаточно сложно, особенно без достаточных знаний по физике, так как показатель этот относится именно к данному направлению науки. Так, данная величина высчитывается как отношение пробного положительного заряда к силе действия. И при этом характеристика относится к векторным показателям. То есть направление ее обязательно аналогично тому, которое воздействует на пробный заряд. Если говорить проще, то напряженность – это сила или мощность электрического поля в конкретное время в определенном месте. Чем этот показатель выше, тем сильнее данное явление воздействует на окружающие предметы или живые существа.
Напряжённость поля
Взаимодействие между заряженными телами описывается количественной характеристикой, определяющей структуру материи. Эта величина называется напряжённостью и определяется из отношения E = F / q, где F — сила, а q — заряд, помещённый в поле. Для однородной изотропной среды выражение можно получить, используя закон Кулона: E = (1 / 4 pE) * (q * r / er 2 r), где r — радиус-вектор.
Линии распространения напряжённости поля одинокого заряда во всех точках имеют радиальный вид. Кривые лежат от частицы при q > 0, к телу при q < 0. Для нескольких же носителей вводится понятие — пробный заряд. Он представляет собой результирующую напряжённость, определяемую суммой векторов сил, разделённых на значение введённой характеристики. Такой подход определения называется принципом суперпозиции.
Используя его, можно определить напряжённость как для системы одиночных носителей, так и проводника в целом. В последнем случае происходит непрерывное перераспределение. Именно поэтому заряженное тело можно представить как совокупность элементарных частиц dq.
Изображать непрерывными линиями напряжённости невидимое поле было предложено Майклом Фарадеем. С их помощью стало возможным определить количественное значение действующей силы. Показывают её с помощью изменения плотности, которую выбирают пропорционально векторам напряжённости по модулю. Другими словами, определяют число кривых, пронизывающих единичную площадь перпендикулярно к поверхности.
Поток вектора напряжённости можно вычислить по формуле: F = E * S * cos (a). Для неоднородного поля выражение проекции находят как произведение вектора площади на энергию материи: dF = E * dS. И в первом, и во втором случае поток считается скалярной величиной. Когда же рассматриваемая поверхность криволинейная, то площадь разбивается на простые контуры. В этом случае поток находится как сумма пронизывающих линий через элементарные поверхности. В любом случае поток, являясь алгебраической величиной, зависит от конфигурации поля и направления.
Изображение напряжённости даёт возможность получить полную картину, которая наглядно показывает, чему равна напряжённость в каждой точке поля и как она изменяется
Какой густоты рисовать линии — неважно.
Причины появления
Оно может возникать на изолированных проводниках, на поверхности или в объеме диэлектриков. Трение, возникающее при соприкосновении двух веществ разного рода, ведет к электризации диэлектриков. Это происходит из-за различных молекулярных и атомных сил. Можно сказать, что статическое электричество получается при нарушении их равновесия благодаря приобретению или потере электрона.
Будет интересно Что такое электромагнитная индукция?
Объяснить этот процесс очень просто. Состояние равновесия атома достигается при наличии одинакового числа протонов и электронов. Перемещаясь от одного атома к другому, электроны формируют положительные и отрицательные ионы.
При их дисбалансе и возникает статическое электричество. Протоны и электроны имеют одинаковый электрический заряд, но с разной полярностью. Он измеряется в кулонах и определяет количество электричества, которое проходит за 1 сек. в поперечном сечении проводника. Статический заряд прямо пропорционален числу неустойчивых ионов, то есть дефициту или избытку электронов.
Природное статическое напряжение
Статическое электричество способно генерироваться. Это происходит за счет отсутствия у положительного иона одного электрона, вследствие чего он может принимать от отрицательной частицы свободный электрон. В свою очередь отрицательный ион может представлять собой атом либо молекулу, обладающую большим количеством электронов. В этих случаях имеется один электрон, который способен нейтрализовать положительный заряд.
Основными причинами, влекущими за собой возникновение статического электричества, являются:
- отдаление или контакт двух материалов;
- быстрые температурные перепады;
- УФ-излучение, радиация, сильные электрические поля;
- операции, производимые путем нарезания (раскроечные станки или бумагорезальные машины);
- наведение, то есть возникновение электрического поля, вызванного статическим зарядом.
Явление, называемое статическим электричеством, встречается повсеместно в быту. Электростатический разряд происходит при очень высоких показателях напряжения, но при низких токах. При этом не возникает опасности для человека. Несмотря на это, защита от статического электричества необходима, так как оно может быть опасным для многих элементов электроприборов. От него очень часто страдают транзисторы, микропроцессоры, схемы и т.д.
Определение
Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.
Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [].
Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.
Рис. 1. Определение понятия «электрическое поле»
Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.
Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.
Характерные физические свойства:
- реагирует на присутствие заряженных частиц;
- взаимодействует с магнитными полями;
- является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
- поддаётся определению только по результатам наблюдения за проявлением действия.
Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.
Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.
Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.
Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.
Практика
Мы уже упомянули о том, что в быту электрическое поле проявляется, когда вы снимаете шерстяную или синтетическую одежду с себя и проскакивают искорки между волосами и шерстью, когда натрете пластиковую линейку и проведете над мелкими бумажками, а они притягиваются и прочее. Но это не является нормальными техническими примерами.
В проводниках малейшее ЭП вызывает движение носителей зарядов и их перераспределение. В диэлектриках, так как ширина запрещенной зоны в этих веществах большая, ЭП вызовет движение носителей зарядов только в случае пробоя диэлектрика. В полупроводниках действие находится между диэлектриком и проводником, но нужно преодолеть небольшую ширину запрещенной зоны, передав энергию порядка 0.3…0.7 эВ (для германия и кремния).
Из того, что есть в каждом доме – это электронные бытовые приборы, в том числе и блоки питания. В них есть важная деталь, которая работает благодаря электрическому полю – это конденсатор. В нём заряды удерживаются на обкладках, разделенных диэлектриком, как раз таки благодаря работе электрического поля. На картинке ниже вы видите условное изображение зарядов на обкладках конденсатора.
Другое применение в электротехнике — это полевые транзисторы или МДП-транзисторы. В их названии уже упоминается принцип действия. В них принцип работы основан на изменении проводимости СТОК-ИСТОК под воздействием на полупроводник поперечного электрического поля, а в МДП (МОП, MOSFET – одно и то же) и вовсе затвор отделен диэлектрическим слоем (окислом) от проводящего канала, так что влияние токов ЗАТВОР-ИСТОК невозможно по определению.
Другое применение уже отошедшее в быту, но еще «живое» в промышленной и лабораторной технике – электроннолучевые трубки (ЭЛТ или т.н. кинескопы). Где одним из вариантов устройства для перемещения луча по экрану является электростатическая отклоняющая система.
Если рассказать простым языком, то есть пушка, которая излучает (эмитирует) электроны. Есть система, которая отклоняет этот электрон в нужную точку на экране, для получения необходимого изображения. Напряжение прикладывается к пластинам, а на эмитированный летящий электрон воздействуют кулоновские силы, соответственно и электрическое поле. Все описанное происходит в вакууме. Тогда к пластинам прикладывают высокое напряжение, а для его формирования устанавливают трансформатор строчной развертки и обратноходовой преобразователь.
На видео ниже кратко и понятно объясняется, что такое электрическое поле и какими свойствами обладает этот особый вид материи:
Материалы по теме:
- Что такое диэлектрические потери
- Зависимость сопротивления проводника от температуры
- Закон Ома простыми словами
- Книги для электриков
Нравится
0)Не нравится
Как изменяется длина вектора Е с расстоянием
Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:
\
Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.
А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.
На рисунке 9 отражено изменение длины вектора напряженности
Обратите внимание на направление этого вектора и знак заряда:. Рис
9. Как напряженность зависит от расстояния до заряда, создавшего поле
Рис. 9. Как напряженность зависит от расстояния до заряда, создавшего поле
Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:
\
Подобную зависимость на графике можно отразить такой кривой:
Рис. 10. Модуль вектора напряженности электрического поля быстро уменьшается с увеличением расстояния до заряда
Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.
Графическое изображение электрических полей
Чтобы задать электрическое поле, надо указать направление и значение силы, действующей на пробный заряд, когда его разместить в той или иной точке поля. Это можно сделать графическим способом, предложенным Фарадеем, с помощью силовых линий (линий напряженности электрического поля).
Направление силовых линий совпадает с направлением вектора напряженности. В случае точечных зарядов силовые линии направлены от положительного заряда и заканчиваются в бесконечности или начинаются в бесконечности и идут к отрицательного заряда.
Сложнее провести линии напряженности, когда поле создано несколькими зарядами, например двумя. Такая система из двух зарядов называется диполем. Провести линию так, чтобы векторы напряженности в каждой точке совпадали с ней, преимущественно нельзя. Поэтому линии напряженности проводят так, чтобы векторы напряженности были направлены по касательной
Линии напряженности точечных зарядов (а, б), диполя (в)
Линии напряженности (силовые линии) электрического поля — непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности поля.
На рисунке изображена еще несколько примеров электрических полей.
Графическое изображение электрических полей: а — одинаковых по значению разноименных зарядов; б — одинаковых по значению одноименных зарядов; в — двух пластин, заряженных разноименными зарядами одинаковой величины.
Изображая электрическое поле графически, нужно помнить, что линии напряженности нигде не пересекаются друг с другом, не должны прерываться между зарядами, начинаются на положительном заряде (или в бесконечности) и заканчиваются на отрицательном заряде (или в бесконечности).
Поле, напряженность которого во всех точках одинакова по модулю и направлению, называют однородным электростатическим полем. Примером такого поля является поле внутри пространства между заряженными пластинами (у краев пластин поле неоднородно).
Что такое электрическое поле
Как и во многих других случаях, начать описание данного явления нужно именно с его определения. С точки зрения современной науки, оно представляет собой специальный вариант материи, созданной при помощи заряженных тел. Обнаружить электрическое поле и его характеристики можно благодаря взаимодействию друг с другом зарядов. Они и есть основные составные элементы данного явления. Обычным зрением обнаружить его невозможно, но у человека много других органов чувств. И вот с их помощью определить наличие такого поля вполне реально. Самый простой пример – поднести руку к экрану телевизора. Он, как и любые другие электронные приборы, создает вокруг себя именно такое поле, на что реагируют волоски на руке. В результате человек получает возможность весьма условно, но все же определять наличие или отсутствие такого явления.
Электрическая напряженность в быту
Вначале создается электрический потенциал для получения поля. Любой диэлектрик натирается о шерсть, волосы, используется, например, пластиковая ручка или эбонитовая палочка. На поверхности предмета создается потенциал, а вокруг возникает электрическое поле. Ручка с зарядом притягивает мелкие кусочки бумаги. Если подобрать правильное сочетание материала и размера предмета, то в темноте наблюдаются небольшие искры, которые появляются вследствие разрядов электричества.
Электростатический фон часто появляется рядом с экраном телевизора при включении или выключении оборудования. Это поле ощущается в виде поднятых волосков на теле. Избыточный потенциал, полученный проводником извне, сосредотачивается на поверхности предмета, как становится ясно из проведенных опытов. Перемещение заряженных частиц к внешней оболочке свидетельствует о появлении электростатического поля внутри проводника, что дает импульс к переброске.
Существует ошибочное мнение, что электрический фон в заряженном теле исчезает после окончания дислокации электронов, а поле действует определенный промежуток времени. Если бы точка зрения была правильной, то избыточный потенциал мог находиться в условиях равновесия и способствовал бы беспорядочному и хаотичному движению молекул. Такое явление никогда не наблюдается в проводниках и заряженных телах.