Фазоповоротные трансформаторы и их использование

Содержание

Режимы работы

Характеристики трансформаторов определяются условиями работы, где ключевая роль отводится сопротивлению нагрузки. За основу берутся следующие режимы:

  1. Холостого хода. Выводы вторичной цепи находятся в разомкнутом состоянии, сопротивление нагрузки приравнивается бесконечности. Измерения тока намагничивания, протекающего в первичной обмотке, даёт возможность подсчитать КПД трансформатора. При помощи этого режима вычисляется коэффициент трансформации, а также потери в сердечнике;
  2. Под нагрузкой (рабочий). Вторичная цепь нагружается определённым сопротивлением. Параметры протекающего по ней тока напрямую связаны с соотношением витков катушек.
  3. Короткого замыкания. Концы вторичной обмотки закорочены, сопротивление нагрузки равно нулю. Режим информирует о потерях, которые вызываются нагревом обмоток, что на профессиональном языке значится «потерями в меди».
    Режим короткого замыкания

Информация о поведении трансформатора в различных режимах получаются опытным путём с использованием схем замещения.

Холостой ход (ХХ)

Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

  • КПД;
  • показателя трансформирования;
  • потерь в магнитопроводе.

Режим нагрузки

Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

Короткое замыкание (КЗ)

Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

Такой режим характерен для приборов измерительного типа.

Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

Задачи на расчет трансформаторов

Специально для тех, кто не знает, как подступиться к задачам по физике, мы подготовили памятку и собрали вместе более 40 формул по разным темам.

Задача на трансформатор №1

Условие

Определите напряжение на концах первичной обмотки трансформатора,имеющей N1=2000 витков, если напряжение на концах вторичной обмотки, содержащей N2=5000 витков, равно 50 В. Активными сопротивлениями обмоток трансформатора можно пренебречь.

Решение

Применим форулу для коэффициента трансформации:

k=N1N2=U1U2

Из данной формулы следует, что:

U1=U2·N1N2

Подставим значения и вычислим:

U1=50·20005000=20 В

Ответ: 20 В.

Задача на трансформатор №2

Условие

Первичная обмотка трансформатора находится под напряжением 220 В, по ней проходит ток 0,5 А. На вторичной обмотке напряжение составляет 9,5 В, а сила тока равна 11 А. Определите коэффициент полезного действия трансформатора.

Решение

Формула для коэффициента полезного действия трансформатора:

η=P2P1·100%

Здесь P=UI –  мощность тока в обмотке.

Возьмем данные из условия и применим указанную формулу:

η=U2I2U1I1·100%η=9,5·11220·,5·100%=95%

Ответ: 95%

Задача на трансформатор №3

Условие

Напряжение на первичной обмотке понижающего трансформатора 220 В, мощность 44 Вт. Определите силу тока во вторичной обмотке, если отношения числа витков обмоток равно 5. Потерями энергии можно пренебречь

Решение

Напряжение на вторичной обмотке будет равно:

U2=U1kU2=2205=44 В

Если считать, что потерь энергии нет, то мощность во вторичной обмотке будет такая же, как и в первичной:

I2=P2U2=44 Вт44 В=1 А

Ответ: 1А

При решении задач не забывайте проверять размерности величин!

Задача на трансформатор №4

Условие

Понижающий трансформатор включен в сеть с напряжением 1000 В и потребляет от сети мощность, равную 400 Вт. Каков КПД трансформатора, если во вторичной обмотке течет ток 3,8 А, а коэффициент трансформации равен 10?

Решение

Сначала определим напряжение на вторичной обмотке трансформатора:

U2=U1k=100010=100 В

Запишем формулу для КПД трансформатора и рассчитаем:

η=P2P1·100%=U2I2P1·100%η=100·3,8400·100%=95%

Ответ: 95%

Задача на трансформатор №5

Условие

Вторичная обмотка трансформатора, имеющая 95 витков, пронизывается магнитным потоком, изменяющимся со временем через один виток по закону Ф=,01sin100πt. Напишите формулу, выражающую зависимость ЭДС во вторичной обмотке от времени.

Решение

По закону электромагнитной индукции:

ε=-NdФdt

Продифференцируем магнитный поток по времени:

dФdt=d(,01sin100πt)dt=,01·100π·cos100πt=πcos100πt

Подставим результат в формулу для ЭДС:

ε=-Nπcos(100πt)

От минуса в данном выражении можно избавиться с помощью формул тригонометрии. Сделаем это и запишем окончательный результат:

ε=Nπsin(100πt-π2)=95πsin(100πt-π2)

Ответ: 95πsin(100πt-π2)

Применение

Использование разделительных трансформаторов особенно необходимо в помещениях, к эксплуатации которых предъявляются повышенные требования к электробезопасности. Это касается:

  • подвальных помещений;
  • кабельных колодцев;
  • объектов с повышенным уровнем влажности;
  • газоопасных мест;
  • при использовании электроинструмента первого класса электробезопасности.

В домашних условиях такие аппараты могут устанавливаться в ванных комнатах, бассейнах и других технических помещениях, где предъявляется повышенный уровень к защите от поражения электрическим током. Возможно их подключение к котельным агрегатам.

Принцип работы

При подключении к первичной обмотке трансформатора источника переменного тока за счет сердечника магнитный поток, который охватывает и вторичную обмотку устройства. При этом индуцируется электродвижущая сила, которая и обеспечивает появление в цепи тока при подключении нагрузки. Благодаря этому осуществляется передача энергии или сигнала без непосредственной электрической связи между обмотками.

Популярные статьи  Коэффициент использования производственной мощности

Фазоповоротные трансформаторы и их использованиеПринцип работы трансформатора

Чтобы обеспечить согласование нагрузки и источника по сопротивлению, соотношение числа витков во вторичной обмотке к первичной должно равняться квадратному корню отношения сопротивления нагрузки и источника сигнала. Только в этом случае можно обеспечить передачу без лишних потерь энергии и искажений.

Пример расчёта

Фазоповоротные трансформаторы и их использование

Необходимо рассчитать коэффициент трансформации для согласующего трансформатора в ламповом усилителе:

Фазоповоротные трансформаторы и их использование

Схема включения обмоток линейного вращающегося трансформатора

На схеме можно ознакомиться с последовательностью подключения в микромашинах типа ЛВТ. Обмотка S подключена к сети переменного тока. Косинусная роторная обмотка 1P последовательно соединяется со статорной K. Компенсационная обмотка замыкается так, что сопротивление равно нулю. С синусной обводки, которая включена на сопротивление нагрузки, снимается выходное напряжение.

Значение напряжения нагрузки Zнг в диапазоне угла a меняется практически пропорционально ему. Обмотка, обозначенная на схеме 2P, замыкается с сопротивлением Zкр для снижения погрешностей расчетов с помощью симметрирования. Нагрузка устанавливается таким образом, чтобы поперечные потоки 1Р и 2Р обмоток компенсировали друг друга, и сопротивление сводилось к нулю.

Основная область применения

Необходимость подобного масштабирования сопротивления существует практически во всех областях, связанных с передачей электрических сигналов и энергии. Но наибольшее применение согласующие трансформаторы получили в следующих сферах:

  1. В усилителях низкой частоты (звуковых усилителях) в качестве межкаскадных и выходных трансформаторов. Необходимость в подобных устройствах была связана с тем, что старые усилители изготавливались на ламповой компонентной базе. При этом практически все лампы отличались высоким внутренним сопротивлением и подключение к ним 4 или 8-омных динамиков напрямую к ним было невозможно. Даже с появлением транзисторов, операционных усилителей ситуация в корне не изменилась, так как без согласования сопротивлений увеличивался уровень искажений сигнала.
  2. В качестве входных согласующие трансформаторы применяются в звуковоспроизводящей аппаратуре для подключения микрофонов, звукоснимателей различных типов. Сопротивление этих устройств варьируется в пределах от десятка до сотни ом, а для подключения к усиливающей аппаратуре требуются значения, которые будут на порядок больше.
  3. Еще одна сфера связана с передачей радиосигнала. Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приемным и передающим устройствам. Без их применения получить качественный сигнал не удается. Отметим, что в этих целях используются высокочастотные согласующие трансформаторы.

На этом область применения не ограничивается. Так, даже обычный сварочный трансформатор в какой-то степени можно считать согласующим, что обусловлено требованиями к величине нагрузки на электрические сети.

Условия эксплуатации

СТ требуется высокая степень надёжности с большими значениями напряжения, мощности. Это влияет на качество эксплуатации, профилактику. Делаются регламентные работы правильного, полного технического обслуживания, ремонта, испытаний, наладки. Трансформаторы и оборудование находятся в месте постоянного дежурства персонала. Графиками ежедневного осмотра, приборами контроля, измерения проверяется состояние работы электрической сети, трансформаторов.

Контролируют показания датчиков приборов, измеряют:

  • Температуру.
  • Давление.
  • Уровень масла.
  • Степень истощённости влагопоглотителей.
  • Состояние регенераторов масла.

Фазоповоротные трансформаторы и их использование

Проверяется потёки масла в каре трансформатора, ОРУ, ЗРУ, механические повреждения в корпусе, фланцевых местах соединений (масла, охлаждающей жидкости), радиаторов, вентиляторов, участков труб. Контролируется число работающих вентиляторов, уровень масла в газоанализаторе при определённой нагрузке трансформатора. Для каждого режима даётся своё количество работающего оборудования, параметры охлаждающей среды, газа, воды, масла. В устройствах с постоянным дежурством персонала, осмотры делаются реже: 1 раз в 30 дней. Не реже 1 раза в ½ года делается осмотр ОРУ, ВРУ, ЗРУ, трансформаторных пунктов.

По графику обслуживания, при ТО доливается масло, смена непригодного трансформаторного масла новым составом. Определяется качество масла химическим лабораторным анализом. В ПУЭ, инструкции трансформаторов, оборудования даются критерии к требованиям масел, визуальному осмотру, цвету. При аварийных режимах, резкой смене температуры наружного воздуха делаются внеплановые осмотры.

Проверке подлежит защита. 1 раз в 365 дней, капитальный ремонт берут на лабораторный анализ масло. Периодичность ТО устройств регулирования напряжения силовых трансформаторов связана с проверкой контактов меди, латуни окисляемости. Делается им профилактика, зачистка, смазка, переборка, подтяжка динамометрическим ключом для уменьшения переходного сопротивления в контактном узле.

С целью смены плёнки окислов 2 раза в 365 дней отключают трансформаторы от электроэнергии, снимают их нагрузку на 0, переключатели ставят во всевозможные регулируемые положения по нескольку раз. Методы смены положений делают в переходный осенний зимний период до максимального набора нагрузки.

Виды согласующих трансформаторов

Наибольшее применение на практике получил звуковой согласующий трансформатор входного и выходного типов. Для усилителей на транзисторной элементной базе используют устройства серии ТОТ (оконечный транзисторный), а на ламповых элементах ТОЛ (оконечный ламповый).

Фазоповоротные трансформаторы и их использование

В качестве входных получила применение серия ТВТ (входной транзисторный).

Фазоповоротные трансформаторы и их использование

Для антенны применяют устройства тороидального типа на ферромагнитных кольцах или конусах необходимого диаметра. Отметим, что для таких трансформаторов не обязательна сплошная намотка по сечению магнитопровода. Достаточно провести через внутреннюю часть прямые проводники, что позволяет сэкономить на производстве за счет уменьшения потребности в электротехнических материалах.

Цена разделительных трансформаторов

Стоимость данных аппаратов зависит от характеристик и назначения, а также ценовой политики производителя и торговой организации. В среднем такое оборудование может стоить от 9 до 70 тыс. руб., в зависимости от указанных характеристик.

В таблице приведено несколько примеров цен данных аппаратов:

Модель Нагрузочная мощность, ВА Напряжение на входе, В Величина номинального электротока, А Масса, кг Цена, руб.
ОРСЗ-400 400 220 1,8 7 9600
ОРСЗ-1000 1000 220 4,5 15 11500
ОРСЗ-3000 3000 220 13,6 28 19900
ОРСЗ-15000 15000 220 68 70 66000

Использование разделительных трансформаторов позволяет добиться высокого уровня безопасности в помещениях, где к эксплуатации электрических сетей предъявляются особые требования. Пользователь может подобрать устройство с необходимыми характеристиками, учитывая финансовые возможности и параметры предполагаемой эксплуатации.

Подключение трансформатора тока

Подключение трансформатора тока в цепь может осуществляться сразу несколькими способами:

Схема 1

Итак, данная система состоит сразу из трех трансформаторов тока, которые обобщены и закреплены в одну звезду. Эту схему принято использовать в качестве цепной защиты от короткого замыкания (будь то многофазное или однофазное замыкание). В том случае, если по цепи проходит ток ниже установленного уровня реле (ka 1-ka 3), то режим работы будет считаться нормальным и цепная защита короткого замыкания не сработает.

Схема №1

Стоит сказать, что ток, протекающий в цепи от ka 0-реле, принято воспринимать в виде геометрической суммы тока (сумма всех 3-х его фаз) Если увеличить в какой-либо фазе ток, то защитная цепь короткого замыкания включится в работу (реле (ka 1-ka 3)).
Для отключения трансформатора в этой цепи и схеме необходимо по-просту приземлить ток.

Схема 2

Вторая схема подключения трансформатора тока в цепь имеет схожие черты с первой. Однако, есть существенные отличия, о которых нельзя не сказать

Популярные статьи  Оригинальная подсветка картин в интерьере

Итак, это структура, включающая несколько трансформаторов тока, как правило, используется в целях безопасности цепи от межфазного замыкания (важное замечание – электрическая цепь имеет нейтральную заземленность)

Схема №2

Данная система начнет работать в случае прохождения тока через реле (опять же ka 1-ka 3) и наличия не самых мощных элементов (потребителя и источника).

Схема 3

Пришло время поговорить и о схеме под номером три, не имеющей серьезных отличий от предыдущих. Она представляет из себя некое соединение в форме треугольника, где нормальный режим работы осуществляется путем проникновения тока в реле.

Фазоповоротные трансформаторы и их использование
Схема №3

Как правило, эта структура применяется в электрических установках для проведения релейных ( релейных – означает дифференциальных, которые отличаются своей селективностью и быстротой действия).

Схема 4

И, наконец, последний – четвертый вид схемы.

Схема №4

Данная структура считается достаточно практичной и универсальной. Это связано с тем, что процесс подключения трансформатора тока в таком виде не только позволяет защитить электрическую цепь от однофазных/межфазных замыканий, но и способна повысить величину тока в необходимых реле.

Отключение также происходит путем заземления.

Определение и виды прибора

Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.

Фазоповоротные трансформаторы и их использование

Классификация по количеству фаз:

  • однофазные;
  • трехфазные.

Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).

Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:

  • для питания токоприёмников специального назначения;
  • для присоединения измерительных приборов;
  • для изменения значения напряжения при испытаниях;
  • для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.

Схемы питания трансформатора

Допускаемая величина плотности тока в проводах обмоток трансформатора в значительной мере определяет вес и стоимость последнего. Чем выше плотность тока в обмотках, тем меньше их вес меди и соответственно стоимость трансформатора. С другой стороны, с увеличением плотности тока возрастают потери в меди обмоток и нагрев трансформатора.

Фазоповоротные трансформаторы и их использование Схема питания тяговой сети системы 2×25 кВ трехфазным трансформатором с повышающими автотрансформаторами.

Самой простой является схема питания тяговой сети системы 2×25 кВ с помощью трехфазного трансформатора и повышающих автотрансформаторов. Особенностью схемы является то, что для повышения напряжения до 55 кВ используется обычный линейный автотрансформатор АТ, который подключен к контактной сети и питающему проводу, а трансформатор Т включен между контактной сетью и рельсами.

Автотрансформаторы устанавливаются на выводах 27,5 кВ трансформатора или на фидерах контактной сети. Последний вариант предпочтительнее, так как позволяет иметь на подстанции только шины контактной сети, а автотрансформаторы могут быть установлены и за пределами территории тяговой подстанции.

В схеме существенно большая часть электроэнергии поступает к электрическим локомотивам непосредственно по контуру контактная сеть — рельсы, минуя повышающий автотрансформатор.

Это обстоятельство позволяет устанавливать повышающие автотрансформаторы на подстанции такой же мощности, что и на фидерной зоне, и не резервировать их на подстанции. При отключении автотрансформатора на подстанции роль повышающего воспринимает на себя ближайший к подстанции автотрансформатор на фидерной зоне.

Как сделать самому разделительный трансформатор

Аппарат небольшой мощности несложно изготовить самостоятельно, при наличии подобных навыков и элементарных знаний в области электротехники.

Последовательность операций:

  • на двух идентичных сердечниках выполняются по две половинных обмотки – катушки разделяются напополам;
  • пара половинных обмоток соединяется последовательным способом;
  • дополнительно можно оборудовать аппарат дросселем или стабилизатором.

Детальнее схема устройства и порядок соединения полуобмоток показан на схеме:

Аппарат может использоваться для запитывания мастерской или другого вспомогательного помещения. Перед подключением к стационарной электросети, устройство необходимо проверить электрическим током небольшой величины. В качестве потребляющего устройства подойдёт обычная лампа небольшой мощности.

Как увеличить передачу энергии

Увеличить передачу электроэнергии по контуру питающий провод-рельсы можно путем установки на подстанциях специальных повышающих автотрансформаторов, мощность которых соответствует нагрузке плеча питания подстанции, или специальным включением на подстанции двух стандартных трехфазных трансформаторов.

Группа соединения У/Д-1 у второго трансформатора получена одноименной двойной перемаркировкой выводов двух фаз первичной и тяговой обмоток стандартного трансформатора. Обозначение выводов вторичной обмотки по заводской маркировке показано на рисунке с индексом «Т».

С рельсами, как и в системе 25 кВ, соединен один и тот же вывод тяговой обмотки обоих трансформаторов (вывод ст по заводской маркировке). Соединение с рельсами вывода ст определяет, что наименее нагруженными у обоих трансформаторов будут обмотки на среднем стержне.

По аналогии с трехфазными трансформаторами в системе 25 кВ в случае присоединения провода к выводу ат имеем положительное напряжение этого провода относительно рельсов, а к выводу Ьт — отрицательное напряжение провода относительно рельсов.

Фазоповоротные трансформаторы и их использование Схема питания тяговой сети системы 2×25 кВ при последовательном соединении двух фаз трехфазных трансформаторов (а), векторные диаграммы напряжений первичных и вторичных обмоток (б).

Первый трансформатор присоединен выводом ат к контактной сети первой фидерной зоны, а выводом Ьт к контактной сети второй фидерной зоны.

Второй трансформатор имеет обратное присоединение: выводом ят он присоединен к питающему проводу второй фидерной зоны, а выводом Ьт — к питающему проводу первой фидерной зоны.

Последовательное включение двух вторичных обмоток трансформаторов с группами соединения обмоток У/Д-11 и У/Д-1 позволяет получить удвоенное напряжение двух фаз, питающих тяговую сеть по разные стороны от подстанции.

Как и выше, у контактной сети и питающего провода, а указаны напряжения питающей линии, с которыми совпадают по фазе напряжения контактной сети и питающего провода. Последние сдвинуты на 180°. Поэтому под рисунком показано положение только напряжений контактная сеть—рельсы. Оно не отличается от положения этих векторов в системе 25 кВ, если в системе 2×25 кВ трансформатор, подключенный к контактной сети, присоединен к тем же фазам питающей линии, что и в системе 25 кВ.

Конструкция

Устройство трансформатора предполагает наличие одной либо большего числа отдельных катушек (ленточных или проволочных), находящихся под единым магнитным потоком, накрученных на сердечник, изготовленный из ферромагнетика.

Фазоповоротные трансформаторы и их использование

Важнейшие конструктивные части следующие:

  • обмотка;
  • каркас;
  • магнитопровод (сердечник);
  • охлаждающая система;
  • изоляционная система;
  • дополнительные части, необходимые в защитных целях, для установки, обеспечения подхода к выводящим частям.

В приборах чаще всего можно увидеть обмотку двух типов: первичную, получающую электроток от стороннего питающего источника, и вторичную, с которой напряжение снимается.

Сердечник обеспечивает улучшенный обратный контакт обмоток, обладает пониженным сопротивлением магнитному потоку.

Некоторые виды приборов, работающие на сверхвысокой и высокой частоте, производятся без сердечника.

Производство приборов налажено в трех базовых концепциях обмоток:

  • броневой;
  • тороидальной;
  • стержневой.

Устройство трансформаторов стержневых подразумевает накручивание обмотки на сердечник строго горизонтальное. В приборах броневого типа она заключена в магнитопроводе, размещается горизонтально либо вертикально.

Популярные статьи  Как переделать электроустановку старого многоквартирного жилого дома в систему TN-С-S?

Надежность, эксплуатационные особенности, устройство и принцип действия трансформатора принимаются без какого-либо влияния принципа его изготовления.

Определение токов устройства

При определении тока первичной обмотки следует учитывать потери, а также намагничивающий ток трансформатора, относительная величина которых в маломощных силовых трансформаторах весьма значительна. Величины токов могут быть определены по следующей формуле:

Фазоповоротные трансформаторы и их использование

где U1 и U2 – напряжения обмоток по заданию;

P2 – мощность вторичной обмотки по заданию;

cos φ2 – коэффициент мощности нагрузки по заданию;

η – коэффициент полезного действия (КПД) трансформатора.

Выбор индукции в стержне сердечника и плотности тока в проводах обмоток трансформатора – допустимая величина индукции в стержне и ярме сердечника трансформатора определяется выбранным значением намагничивающего тока, мощностью, частотой, типом трансформатора, числом стыков в сердечнике и материалом последнего.

Классификации

Трансформаторы классифицируются по ряду параметров, таким как:

  • Назначение. Применяются: для изменения напряжения, измерения тока, защиты электрических цепей, как лабораторные и промежуточные устройства.
  • Способ установки. В зависимости от размещения и мобильности трансформатор может быть: стационарным, переносным, внутренним, внешним, опорным, шинным.
  • Число ступеней. Устройства подразделяются на одноступенчатые и каскадные.
  • Номинальное напряжение. Бывают низко- и высоковольтными.
  • Изоляция обмоток. Наиболее часто используется бумажно-масляная, сухая, компаундная.

Помимо этого, преобразовательные устройства разнятся типами, каждому из которых присуща своя система классификации.

Силовой

Наибольшее распространение получил силовой трансформатор. Приборы с непосредственным преобразованием переменного напряжения, рассчитанные на большую мощность, востребованы различными областями электроэнергетики. Они применяются на линиях электропередач с напряжениями 35–1150 кВ, в городских электросетях, работающих с напряжением 6 и 10 кВ, в обеспечении конечных потребителей напряжением 220/380В. С помощью устройств осуществляется питание всевозможных электроустановок и приборов в диапазоне от долей до сотен тысяч вольт.

Силовой трансформатор

Измерительные

Трансформаторы тока (ТА) понижают ток до необходимых показателей. Схема их работы отличается последовательным включением первичной обмотки и нагрузки. В то же время вторичная обмотка, находящаяся в состоянии, близком к короткому замыканию, используется для подключения измерительных приборов, исполнительных и индикаторных устройств. С помощью ТА осуществляется гальваническая развязка, что позволяет при измерениях отказаться от шунтов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

С помощью трансформаторов напряжения (ТН), тоже самое что и ТА только по напряжению. Помимо преобразования входных параметров, электроаппаратура и её отдельные элементы получают защиту от высокого вольтажа.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Импульсный

При необходимости преобразования сигналов импульсного характера применяются импульсные трансформаторы (ИТ). Изменяя амплитуду и полярность импульсов, устройства сохраняют их длительность и практически не затрагивают форму.

Автотрансформатор

В автотрансформаторах обмотки составляют одну цепь и взаимодействуют посредством электромагнитной и электрической связи. В отличие от других типов преобразователей, устройства могут содержать всего 3 вывода, позволяющих оперировать с различными напряжениями. Приборы выделяются высоким коэффициентом полезного действия, что особо сказывается при незначительном перепаде входного и выходного напряжения.

Однофазный(слева) и трёхфазный(справа)

Не имея гальванической развязки, представители данного типа повышают риск высоковольтного удара по нагрузке. Обязательным условием работы устройств являются надёжное заземление и низкий коэффициент трансформации. Недостаток компенсируется меньшим расходом материалов при изготовлении, компактностью и весом, стоимостью.

Разделительный

Для разделительных трансформаторов взаимодействие между обмотками исключено. Устройства повышают безопасность электрооборудования при повреждённой изоляции.

Разделительный трансформатор

Согласующий

Согласующие трансформаторы применяются для выравнивания сопротивлений между каскадами схем электроники. Сохраняя форму сигнала, они играют роль гальванической развязки.

Пик-трансформатор

С помощью пик-трансформатора синусоидальное напряжение преобразуется в импульсное. При этом импульсы меняют полярность с каждым полупериодом.

Сдвоенный дроссель

Особенностью сдвоенного дросселя является идентичность обмоток. Взаимная индукция катушек делает его более эффективным, по отношению стандартным дросселям. Устройства используются как входные фильтры в блоках питания, в звуко- и цифровой технике.

Сдвоенный дроссель

Сварочный

Помимо вышеперечисленных, существует понятие сварочные трансформаторы. Специализированные приборы для сварочных работ понижают напряжение бытовой сети при одновременном повышении тока, измеряемого тысячами ампер. Регулировка последнего осуществляется разделением обмоток на сектора, что отражается на индуктивном сопротивлении.

Сварочный трансформатор

Принцип действия

Основой трёхфазного трансформатора являются магнитопровод и обмотки. В каждой фазе присутствует своя повышающая и понижающая обмотка. Так как фаз три, соответственно обмоток шесть. Между собой они не соединены.

Фазоповоротные трансформаторы и их использование

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции.

При подключении к сети первичной обмотки в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.

Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:

E 1 = 4, 44f 1 Ф W 1

Фазоповоротные трансформаторы и их использованиеE 2 = 4, 44 f 1 Ф W 2

E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;

f 1 — частота тока в сети, Гц;

Ф — максимальное значение основного магнитного потока, Вб;

W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Общая характеристика

Применение фазоповоротных трансформаторов началось еще с 1969 года в Великобритании. В Европе подобные агрегаты устанавливают с конца прошлого столетия. Их еще называют кросс-трансформаторами. Такие устройства обладают сложным устройством. Встречаются приборы двухтрансформаторной мостовой схемы с фазовым сдвигом или иные разновидности. Они предназначены для управления активной и реактивной мощностью для трехфазных сетей.

Применение представленных агрегатов позволяет в режиме максимальной загруженности снять напряжение и перераспределить его оптимальным образом. Установка такого сооружения обходится дорого. Однако оно окупается быстро. Условия работы коммуникаций энергоснабжения оптимизируется

Это особенно важно для мощных линий электропередач

Конструкция оборудования сложна. Она включает в себя множество обмоток, регуляторов напряжения и соединений между тремя фазами. Одним из таких регуляторов может быть трансформатор фазового компаундирования.

Назначение

Известно, что минимизировать потери электрических сигналов при передаче потребителю можно только тогда, когда его полное сопротивление соответствует внутреннему сопротивлению источника. Это правило действует для всех схем — многокаскадных электронных устройств, при подключении нагрузки к усилителям или подаче на них сигнала, например, от звукоснимателя или микрофона.

Основное назначение согласующего трансформатора связано именно с необходимостью масштабирования сопротивления источника и нагрузки. При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения. Применяются такие приборы тогда, когда требуется подключение нагрузки, не соответствующей по сопротивлению допустимым значениям для источника сигнала.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: