Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

ОАО «Электроприбор»

Один из таких долгожителей — Чебоксарский завод электроизмерительных приборов. Сегодня он называется ОАО «Электроприбор». Его цеха выпускают аналоговые и цифровые электроизмерительные устройства и шунты. В прайсах завода – амперметры, вольтметры, ватт- и варметры, многофункциональные устройства для измерений. А также измерительные преобразователи напряжения, тока, частоты и мощности. В современных реалиях завод принял к производству линейку вспомогательных изделий – шунтов, которые способны расширять диапазон измерения по напряжению и току. Выпускает «Электроприбор» трансформаторы и добавочные сопротивления.

Пользуются большим спросом приборы с электронными преобразователями, измеряющими частоту реактивной или активной мощности, а также ее коэффициент. Не менее популярны индикаторы, приборы для оснащения специализированных учебных кабинетов, различные цифровые приборы и комплектующие. В конце прошлого века предприятие получило сертификат, подтверждающий систему менеджмента качества ИСО 9001, соответствующую международному стандарту.

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Чебоксарский завод более 55 лет занимает лидерские позиции среди производителей электроизмерительных приборов.

Другие признаки систематизации

Существуют и другие признаки, по которым классифицируют такой вид устройств, как электроизмерительный прибор. Это может быть:

1. Назначение: меры, измерительные приборы и преобразователи, измерительные системы и установки, прочие вспомогательные устройства.

2. Система предоставления полученного результата: регистрирующие (графическое изображение на фотопленке или бумаге либо в виде компьютерного файла) или показывающие.

3. Способ измерения: приборы сравнения или непосредственной оценки.

4. Способ использования и конструктивные особенности: переносные, щитовые (закрепляются на специальной панели или щите), стационарные.

По принципу действия классификация электроизмерительных приборов выглядит следующим образом:

электромеханические, которые, в свою очередь, подразделяются:

— на электромагнитные,

— магнитоэлектрические,

— электростатические,

— индукционные,

— электродинамические,

— магнитодинамические,

— ферродинамические;

  • электронные;
  • электрохимические;
  • термоэлектрические.

Система обозначений

За рубежом заводы-изготовители устанавливают свои обозначения на выпускаемых измерительных устройствах. В России и некоторых бывших республиках Советского Союза традиционна унифицированная система знаков. Основана она на принципе работы конкретного прибора. Основные электроизмерительные приборы в обозначении всегда имеют прописную букву русского алфавита, которая указывает на принцип действия устройства. А также число, которое обозначает условный номер модели. Иногда можно встретить прописную букву М, которая обозначает, что прибор модернизированный или К (контактный). Есть и другие, обозначения. Например, Д (электродинамические приборы), Н (самопишущие приборы), Р (меры, устройства, измеряющие параметры элементов электросетей, измерительные преобразователи), И (индукционные приборы), Л (логометры) и пр.

Советуем изучить — Провода и защитные оболочки для монтажа электропроводки на станках

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Классификация электроизмерительных приборов

Один из существенных признаков систематизации подобных устройств — воспроизводимая или измеряемая физическая величина. Согласно ему приборы подразделяются:

— на измеряющие силу электрического тока – амперметры,

— измеряющие электрическое напряжение – вольтметры,

— измеряющие электрическое сопротивление – омметры,

— измеряющие частоту колебаний электротока – частотомеры,

— измеряющие различные величины – мультиметры или авометры, тестеры,

— для воспроизведения указанных сопротивлений – магазины сопротивлений,

— измеряющие мощность электрического тока – варметры и ваттметры,

— измеряющие потребление электрической энергии – электросчетчики и пр.

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Принцип работы

Большинство электроизмерительных устройств имеют принцип действия, основанный на том, что электроны двигаются по проводнику электроцепи и создают вокруг себя магнитное поле. Стрелка измерительного приспособления перемещается в этом поле, реагируя на его параметры. Чем ниже показатели магнитной зоны, тем меньше отклонения стрелки.

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Шкала и стрелка присутствуют на многих приборах и визуализируют особенности электрического тока

При этом все приборы электроизмерительного типа по принципу действия разделяются на следующие виды:

  • магнитоэлектрические, в которых ток пропускается через особую рамку в виде нескольких витков изолированной проволоки. Она размещена между полюсами постоянного магнита, поля их взаимодейству­ют. Рамка и сидящая на одной с ней оси стрелка перемещаются на определённый угол, который пропорционален напряжению или току. Эти приспособления предоставляют точные данные, но без дополнительных устройств используются для определения небольших значений и лишь тока постоянного типа;
  • в электродинамических устройствах магнитное поле, в котором вращается рамка, получается не благодаря постоянному магниту, а с помощью катушки с током. У этих приборов имеются две катушки: неподвижная и подвижная (рамка, жёстко соединённая со стрелкой). Устройства оптимальны для измерения постоянного и непостоянного вариантов тока;
  • работа тепловых моделей осуществляется в результате нагревания током и удлинения проводников. Приборы используются как для постоянного, так и для тока переменного типа;
  • действие электростатических устройств основано на взаимной силе притяжения пластин. Это осуществляется в результате воздействия на них напряжения.

Шкала — электроизмерительный прибор

Шкалы электроизмерительных приборов представляют собой плоские детали ( в отдельных случаях в виде части цилиндра), на поверхности которых тем или иным способом нанесены цифры и знаки.   Шкалы электроизмерительных приборов обычно изготовляют так, что одно деление шкалы при -; близительно равно максимальной погрешности прибора. Забегая вперед, отметим, что при измерениях, при расчетах и при записи результатов, кроме надежно известных значащих цифр, всегда указывается одна лишняя. Такая процедура, среди прочих, имеет и то преимущество, что позволяет вовремя замечать мелкие нерегулярности исследуемых зависимостей.  

Шкалы электроизмерительных приборов могут быть прямыми и обратными. В первом случае начало отсчета расположено в левой части шкалы. Обратная шкала имеет начало с правой стороны. Примером прибора с обратной шкалой является омметр. Точка начала отсчета этого прибора ( нуль омов) расположена справа, так как это положение соответствует отсутствию сопротивления в измеряемой цепи и, следовательно, полному отклонению стрелки прибора. При наличии сопротивления в измеряемой цепи стрелка отклонится не на полную шкалу, причем большему сопротивлению соответствует меньшее отклонение.  

Популярные статьи  Магия подвесных светильников
Равномерная шкала.| Неравномерная шкала.  

Шкалы электроизмерительных приборов бывают равномерные и неравномерные. На равномерной шкале ( рис. V-3) расстояния между делениями одинаковы. Она наиболее удобна для отсчета. На неравномерной шкале ( рис. V-4) расстояния между делениями неодинаковы.  

Советуем изучить — Электрооборудование лесопильных рам

Шкалы электроизмерительных приборов представляют собой пластинки ( подшкальники) из металла или изоляционного материала, окрашенные или оклеенные бумагой. Подшкальники изготовляются из диамагнитных материалов: листовой латуни, алюминия или цинка толщиной 1 — 1 5 мм. Подшкальники из алюминия обычно корродируются с течением времени, а цинковые подвержены короблению. Железные подшкальники устанавливаются в приборах типа ЭЗО.  

Шкалы электроизмерительных приборов, применяемых для измерения синусоидальных токов и напряжений, проградуированы в действующих значениях, и для определения амплитуд синусоидальных величин их показания достаточно увеличить в У 2 раз.  

На шкалах стационарных электроизмерительных приборов должна наноситься красная черта, соответствующая номинальному значению измеряемой величины.  

На шкалах электроизмерительных приборов промышленного изготовления обязательно указывается тип прибора, его система, род тока, рабочее положение корпуса, испытательное напряжение прочности изоляции его токонесущих частей, номинальная частота ( или диапазон частот), год выпуска и заводской номер.  

Наличие на шкалах электроизмерительных приборов условных обозначений позволяет без изучения описания или паспорта иметь основные сведения о приборе, достаточные для решения вопроса о возможности его использования.  

В фотометрах прямого отсчета шкала электроизмерительного прибора часто градуируется непосредственно в светотехнических единицах.  

В фотометрах прямого отсчета шкала электроизмерительного прибора часто градуируется непосредственно в световых единицах.  

На рисунке 308 изображены шкалы электроизмерительных приборов. Как называются эти приборы.  

Отсчет показаний производится по шкале электроизмерительного прибора с последующим умножением этик показаний на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими.  

Какие условные обозначения имеются на шкале электроизмерительного прибора.  

Электростатический механизм

Электростатический механизм (рис. 11.8) состоит из двух (и более) металлических изолированных пластин, выполняющих роль электродов. На неподвижные пластины 1 подается потенциал одного знака, а на подвижные 2 — потенциал другого знака. Подвижная пластина вместе с указателем 3 укреплена на оси и под действием сил электрического поля между пластинами поворачивается. При постоянном напряжении U между пластинами емкостью С вращающий момент пропорционален зарядам q = CU на пластинах.

Рис. 11.8 Конструктивное исполнение измерительного механизма электростатической системы

При синусоидальном напряжении U = Um sin ωt подвижная часть механизма реагирует на среднее значение момента: MBP*СР=K2U2 (где U – действующее значение напряжения).

Электростатические приборы, в которых используется электростатический механизм, применяются в качестве вольтметров постоянного и переменного тока.

Угол отклонения указателя электростатического прибора пропорционален квадрату напряжения, т. е. шкала является квадратичной. Подбором формы электродов (пластин) можно получить практически равномерную шкалу.

Электростатические вольтметры отличаются малым собственным потреблением энергии, широким частотным диапазоном (до 10 МГц), нечувствительностью к внешним магнитным полям, колебаниям температуры, их показания не зависят от формы кривой измеряемого напряжения. К недостаткам этих приборов следует отнести сравнительно низкую чувствительность (без предварительных усилителей сигналов их нижний предел измерения составляет 10 В), необходимость электростатического экранирования от внешних электрических полей.

Характеристики шкал измерительных приборов >

Магнитоэлектрический измерительный механизм

Подвижная часть магнитоэлектрического измерительного механизма (рис. 1) состоит из прямоугольной катушки (рамки) В. Обмотка рамки из тонкого изолированного медного провода наложена на алюминиевый каркас. На рамке укреплены две полуоси — керны, установленные в опорах. На одной из полуосей укреплены стрелка и концы спиральных пружин, через которые ток подводится к обмотке рамки.

Рис. 1. Магнитоэлектрический измерительный механизм

Боковые стороны рамки расположены в узком воздушном зазоре А между неподвижным стальным цилиндром Б и полюсными башмаками N, S. Сильный постоянный магнит N—S создает в воздушном зазоре однородное радиальное магнитное поле.

На боковые стороны рамки, расположенные в магнитном поле, при наличии тока в обмотке, будет действовать пара сил F, F (рис. 2). Таким образом создается вращающий момент, пропорциональный току в рамке. Под действием этого момента рамка повернется на угол a, при котором вращающий момент уравновесится противодействующим моментом пружин. Последний пропорционален углу закручивания пружин. Угол поворота рамки пропорционален току.

Рис. 2. Получение вращающего момента в магнитоэлектрическом измерительном механизме

Успокоителем называется приспособление, предназначенное для уменьшения времени колебаний подвижной части, возникающих после включения прибора. В магнитоэлектрическом измерительном механизме успокоителем является алюминиевый каркас рамки. При повороте подвижной части изменяется магнитный поток, пронизывающий каркас. В каркасе индуктируются токи, взаимодействие которых с магнитным полем магнита создает тормозной момент, обеспечивающий успокоение.

Рассмотренный измерительный механизм в связи с малым сечением пружин и провода обмотки изготавливается на малые номинальные токи 10—100 мА и меньше.

При включении магнитоэлектрического измерительного механизма рассмотренной конструкции в цепь переменного тока вращающий момент будет изменяться пропорционально мгновенному значению тока. При таком быстром изменении момента вследствие инерции подвижная часть не успеет следовать за изменением момента, и она отклонится на угол, пропорциональный среднему за период значению вращающего момента. При синусоидальном токе среднее значение тока, а следовательно, и момента равно нулю и подвижная часть не отклонится. Таким образом, рассмотренный измерительный механизм пригоден только для измерений в цепи постоянного тока.

Классификация электроизмерительных приборов.

По типу измеряемой физической величины приборы делятся на:

— амперметры — для измерения силы электрического тока;

— вольтметры — для измерения электрического напряжения;

— омметры — для измерения электрического сопротивления;

— мультиметры (иначе тестеры, авометры) — комбинированные приборы

Популярные статьи  Неполярный конденсатор

— частотомеры — для измерения частоты колебаний электрического тока;

— магазины сопротивлений — для воспроизведения заданных сопротивлений;

— ваттметры и варметры — для измерения мощности электрического тока;

— электрические счётчики — для измерения потреблённой электроэнергии;

— фазометры – для измерения коэффициента мощности (cosφ) и угла сдвига

фаз.

По назначению:измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;

По способу представления результатов измерений -показывающие и регистрирующие (в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде).

По методу измерения — приборы непосредственной оценки и приборы сравнения;

По способу применения и по конструкции — щитовые (закрепляемые на щите или панели), переносные и стационарные.

По принципу действия электроизмерительные приборы разделяют на: магнитоэлектрические, электродинамические, электромеханические, электромагнитные, индукционные, электростатические, магнитодинамические, ферродинамические, электронные, электрохимические и термоэлектрические.

По роду токаизмерительные приборы делятся на приборы, работающие в сетях переменного или постоянного тока. На приборах переменного тока дополнительно указывается диапазон частот, в котором они могут работать.

По классу точности. Класс точности прибора обо­значают числом, равным наибольшей допустимой приведенной погреш­ности, выраженной в процентах. Выпускают приборы сле­дующих классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Для счетчиков активной анергии шкала классов точ­ности несколько другая: 0,5; 1,0; 2,0; 2,5. Цифру, обозна­чающую класс точности, указывают на шкале прибора.

Таблица 2. Условные обозначения на шкалах измерительных приборов

Наименование Условное обозначение
Магнитоэлектрический прибор с подвижной рамкой
Магнитоэлектрический логометр с подвижными рамками
Магнитоэлектрический прибор с подвижным магнитом
Магнитоэлектрический логометр с подвижным магнитом
Электромагнитный прибор
Электромагнитный логометр
Электродинамический прибор
Электродинамический логометр
Ферродинамический прибор
Ферродинамический логометр
Индукционный прибор
Индукционный логометр
Электростатический прибор
Защита от внешних магнитных полей (I категория защищенности)
Защита от внешних электрических полей (I категория защищенности)
Постоянный ток
Переменный (однофазный) ток
Постоянный и переменный ток
Трехфазный ток (общее обозначение)
Трехфазный ток при неравномерной нагрузке фаз
Прибор с трехэлементным измерительным механизмом (для четырехпроводной сети)
Класс точности при нормировании погрешности в процентах от диапазона измерения 1,5
Горизонтальное положение шкалы
Вертикальное положение шкалы
Наклонное положение шкалы под определенным углом к горизонту, например, 60°
Измерительная цепь изолирована от корпуса и испытана напряжением, например, 2 кВ
Группа эксплуатации прибора А– для работы в закрытых сухих отапливаемых помещениях; Б– для работы в закрытых не отапливаемых помещениях; В– для работы в полевых (В1) и морских (В2) условиях. Отсутствие на лицевой панели прибора обозначения группы, означает его принадлежность к группе А.
Приборы для измерения силы тока: А

µА

Амперметр Миллиамперметр Микроамперметр
Приборы для измерения напряжения: V

mV

кV

Амперметр Милливольтметр Киловольтметр
Приборы для измерения сопротивления: Ω

k Ω

Омметр Килоомметр Мегаомметр
Приборы для измерения мощности: W

VAR

Ватметр Варметр
Прибор для измерения угла сдвига фаз: φ Фазометр
Прибор для измерения частоты переменного тока: Hz Частотомер
Прибор для измерения электрической энергии: Wh Счетчик

Электродинамический измерительный механизм

Электродинамический измерительный механизм (рис. 4 и 5) состоит из двух катушек — неподвижной А, имеющей две секции, и подвижной Б, укрепленной на одной оси с указательной стрелкой, крылом В воздушного успокоителя и двумя спиральными пружинами.

При прохождении тока I1, по неподвижной катушке и тока I2 по подвижной катушке между ними возникает электродинамическое взаимодействие. В результате на подвижную катушку будет действовать пара сил FF (рис. 4), то есть вращающий момент. Поворот подвижной катушки происходит до тех пор, пока вращающий момент не уравновесится противодействующим моментом пружин.

При постоянном токе вращающий момент и угол поворота подвижной катушки пропорционален произведению токов в катушках. При переменном токе

Рис. 4. Электродинамический измерительный механизм

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Рис. 5. Получение вращающего момента в электродинамическом измерительном механизме

вращающий момент и пропорциональный ему угол поворота подвижной катушки определяется произведением действующих значений токов в катушках и косинусу угла сдвига между ними.

Отсутствие стали в измерительном механизме, а следовательно, и погрешности от остаточной индукции обеспечивают возможность изготовить эти механизмы для измерений высокой точности.

Для уменьшения погрешностей от внешних магнитных полей, обусловленных слабым магнитным полем измерительного механизма, применяются те же средства, что и для электромагнитных измерительных механизмов.

Слабому магнитному полю соответствует слабый вращающий момент и, следовательно, для получения высокой точности необходимо уменьшить погрешность от трения. Это достигается уменьшением веса подвижной части и безупречной обработкой осей и опор. Кроме того, поперечное сечение пружин и проводов подвижной катушки мало, поэтому электродинамический измерительный механизм чувствителен к перегрузке.

Классификация электроизмерительных приборов по принципу действия

По принципу действия электроизмерительные приборы подразделяются на следующие основные типы:

1. Приборы магнитоэлектрической системы, основанные на принципе взаимодействия катушки с током и внешнего магнитного поля, создаваемого постоянным магнитом.

2. Приборы электродинамической системы, основанные на принципе электродинамического взаимодействия двух катушек с токами, из которых одна неподвижна, а другая подвижна.

3. Приборы электромагнитной системы, в которых используется принцип взаимодействия магнитного поля неподвижной катушки с током и подвижной железной пластинки, намагниченной этим полем.

4. Тепловые измерительные приборы, использующие тепловое действие электрического тока. Нагретая током проволока удлиняется, провисает, и вследствие этого подвижная часть прибора получает возможность повернуться под действием пружины, выбирающей образовавшуюся слабину проволоки.

5. Приборы индукционной системы, основанные нa принципе взаимодействия вращающегося магнитного поля с токами, индуктированными этим полем в подвижном металлическом цилиндре.

6. Приборы электростатической системы, основанные на принципе взаимодействия подвижных и неподвижных металлических пластин, заряженных разноименными электрическими зарядами.

7. Приборы термоэлектрической системы, представляющие собой совокупность термопары с каким-либо чувствительным прибором, например, магнитоэлектрической системы. Измеряемый ток, проходя через термопару, способствует возникновению термотока, воздействующего на магнитоэлектрический прибор.

Популярные статьи  Можно ли прокладывать кабель под вагонкой?

8. Приборы вибрационной системы, основанные нa принципе механического резонанса вибрирующих тел. При заданной частоте тока наиболее интенсивно вибрирует тот из якорьков электромагнита, период собственных колебаний которого совпадает с периодом навязанных колебаний.

9. Электронные измерительные приборы — приборы, измерительные цепи которых содержат электронные элементы. Они используется для измерений практически всех электрических величин, а также неэлектрических величин, предварительно преобразованных в электрические.

По типу отсчетного устройства различают аналоговые и цифровые приборы. В аналоговых приборах измеряемая или пропорциональная ей величина непосредственно воздействует на положение подвижной части, на которой расположено отсчетное устройство. В цифровых приборах подвижная часть отсутствует, а измеряемая или пропорциональная ей величина преобразуется в числовой эквивалент, регистрируемый цифровым индикатором.

Индукционный счетчик электроэнергии:

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Отклонение подвижной части у большинства электроизмерительных механизмов зависит от значений токов в их катушках. Но в тех случаях, когда механизм должен служить для измерения величины, не являющейся прямой функцией тока (сопротивления, индуктивности, емкости, сдвига фаз, частоты и т. д.), необходимо сделать результирующий вращающий момент зависящим от измеряемой величины и не зависящим от напряжения источника питания.

Для таких измерений применяют механизм, отклонение подвижной части которого определяется только отношением токов в двух его катушках и не зависит от их значений. Приборы, построенные по этому общему принципу, называются логометрами. Возможно построение логометрического механизма любой электроизмерительной системы с характерной особенностью — отсутствием механического противодействующего момента, создаваемого закручиванием пружин или растяжек.

Условные обозначения на вольтметре:

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

На рисунках ниже приведены условные обозначения электроизмерительных приборов по принципу их действия.

Обозначение принципа действия прибора

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Обозначения рода тока

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Обозначения класса точности, положения прибора, прочности изоляции, влияющих величин

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

З.2. КЛАССИФИКАЦИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Электроизмерительные приборы можно классифицировать по следующим признакам: методу измерения;
роду измеряемой величины;
роду тока;
степени точности;
принципу действия
.
Существует два метода измерения: 1) метод непосредственной оценки, заключающийся
в том, что в процессе измерения сразу оценивается измеряемая величина;

2) метод сравнения, или нулевой метод, служащий основой действия приборов
сравнения: мостов, компенсаторов.
По роду измеряемой величины различают электроизмерительные приборы:
для измерения напряжения (вольтметры, милливольтметры, гальванометры);
для измерения тока (амперметры, миллиамперметры, гальванометры); для
измерения мощности (ваттметры); для измерения энергии (электрические
счетчики); для измерения угла сдвига фаз (фазометры); для измерения
частоты тока (частотомеры); для измерения сопротивлений (омметры), и
т.д.
В зависимости от рода измеряемого тока различают приборы постоянного,
переменного однофазного и переменного трехфазного тока.
По степени точности приборы подразделяются на следующие классы точности:
0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; и 4,0. Класс точности не должен
превышать приведенной относительной погрешности прибора, которая определяется
по формуле:

где А — показания поверяемого прибора; А — показания образцового прибора;
Amax — максимальное значение измеряемой величины (предел измерения).
В зависимости от принципа действия различают системы электроизмерительных
приборов. Приборы одной системы обладают одинаковым принципом действия.
Существуют следующие основные системы приборов: магнитоэлектрическая,
электромагнитная, электродинамическая, индукционная.

ОАО «НИИ Электромера»

65 лет назад, согласно Постановлению Совета министров СССР, был образован ВНИИЭП — Всесоюзный научно-исследовательский институт электроизмерительных приборов. Кроме научно-исследовательских работ по разработке новейших образцов техники здесь изготавливали небольшие серии высокоточных, уникальных приборов. Разрабатывая системы электроизмерительных приборов, предназначенных для автоматизации экспериментов и промиспытаний сложной техники, институт создал измерительно-управляющие комплексы.

В конце прошлого столетия ВНИИЭП преобразован в ОАО «НИИ Электромера».

Основные понятия измерений

Измерением называют процесс сравнения измеряемой величины с величиной того же рода, условно приятой за единицу измерения.

Материальный образец единицы измерения ее дробного или кратного значения называется мерой.

Устройство, предназначенное для сравнения измеряемой величины с единицей измерения или с мерой, называют измерительным прибором.

Меры и приборы, предназначенные для хранения или воспроизводства единиц, а также для поверки и градуировки приборов, носят название образцовых.

Результат всякого измерения несколько отличается от действительного значения измеряемой величины. Действительное значение измеряемой величины это значение, определяемое при помощи образцовых приборов (образцовых мер).

Разность между измеренным и действительным значением величины составляет абсолютную погрешность измерения. Выраженное в процентах отношение абсолютной погрешности к действительному или измеренному значению представляет собой относительную погрешность, которая применяется для оценки качества измерения.

Конструкция и области применения измерительных приборов

Для измерения различных показателей электрического тока используют специальные приборы. Такие устройства разнообразны и классифицируются по нескольким критериям, что позволяет выбрать оптимальный вариант. Все варианты образуют отдельный класс, называющийся электроизмерительные приборы.

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Электроизмерительные приборы многообразны, так как необходимы в разных сферах деятельности

Многие варианты приборов обязательно предполагают наличие дисплея, на котором отображается информация. Также в конструкции присутствуют переключатель или кнопка управления прибором. Разъёмы для подключения кабелей, корпус, кнопка включения/отключения тоже являются элементами электроизмерительных приборов.

Классификация электроизмерительных приборов, условные обозначения на шкалах приборов

Дисплей или циферблат всегда присутствуют на приборах измерения электротока

Устройства разного типа применяют в следующих сферах деятельности:

  • медицина;
  • связь и энергетика;
  • научные исследования;
  • бытовые условия;
  • транспортная промышленность;
  • производство любого типа.

Простые или сложные модели приборов позволяют измерить силу тока и другие показатели электроэнергии. Для бытовых условий применяют простой вариант — счётчик электроэнергии, а в промышленности используются более сложные и профессиональные устройства. Таким образом, для электроизмерительных приспособлений каждого типа характерно определённое назначение.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: